Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(2): 63, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302793

RESUMEN

This study investigates the effect of boundary conditions and treatment-time on the electro-desalination of artificially-contaminated soil. The effect of ion exchange membranes (IEM), calcium chloride (CaCl2), and ethylenediaminetetraacetic acid (EDTA) on the removal of salt (i.e., Na+, Cl-, and Ca2+) and metal (i.e., Co2+ and Fe2+) ions from the soil by electrokinetic (EK) was studied. The outcomes demonstrate that an increase in treatment-time decreases the electroosmosis and ion removal rate, which might be attributed to the formation of acid-base fronts in soil, except in the IEM case. Because a high pH jump and electroosmotic flow (EOF) of water were not observed within the soil specimen due to the IEM, the removal of ions was only by diffusion and electromigration. The collision of acid-base fronts produced a large voltage gradient in a narrow soil region with a reduced electric field (EF) in its remaining parts, causing a decrease in EOF and ion transport by electromigration. The results showed that higher electroosmosis was observed by using CaCl2 and EDTA; thus, the removal rate of Co2+, Na+, and Ca2+ was greater than Cl- due to higher EOF. However, for relatively low EOF, the removal of Cl- exceeded that of Co2+, Na+, and Ca2+, possibly due to a lack of EOF. In addition, the adsorption of Fe2+ in soil increased with treatment-time due to the corrosion of the anode during all EK experiments except in the case of IEM, where an anion exchange membrane (AEM) was introduced at the anode-soil interface.


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes del Suelo , Ácido Edético , Suelo , Cloruro de Calcio , Iones , Contaminantes del Suelo/análisis
2.
Environ Res ; 242: 117736, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38007083

RESUMEN

Environmental contamination is a global challenge that impacts every aspect of ecosystem. The contaminants from anthropogenic or industrial trash continually recirculate into the environment, agricultural land, plants, livestock, and ultimately into humans by way of the food chain. After an increase in human and farmland animal deaths from illnesses due to contaminated drinking water, toxic metal water poisoning has remained a global concern. Diverse environmental and enforcement organisations have attempted to regulate the activities that serve as precursors to these heavy metals which have been proven ineffective. These unnecessary metals have severely hampered most biological processes. The presence of hazardous metals, which are harmful at extremely high levels and have a negative effect on the health of living bodies generally degrades the nutritional value of water. In order to evaluate the heavy metals (Cu, Ni, and Fe) toxicity of groundwater in pri-urban areas, the current study was conducted that have been considered as advance solution to tackle climate change which influence coastal ecosystem. Additionally, the impacts of soil and plant (spinach and brassica) contamination from groundwater were evaluated. The heavy metals were examined in the soil and groundwater samples (Pb, Fe and Ni). While Fe concentrations in water samples were found to be high as 1.978 mg/L as compared to Ni and Cu values low. According to WHO guidelines, the mean value of Fe exceeds the limit value. Similarly, Cu had a higher mean value (0.7 mg/L) in soil samples than other metals (Ni and Fe). In comparison to Ni and Cu, the Fe concentrations in spinach and brassica plants samples are greater, at 17.2 mg/L and 3.22 mg/L, respectively. The possible effects of metal poisoning of groundwater and plants on human health have been assessed using the Hazard Quotient (HQ), Evaluated Daily Intake (EDI), and Incremental Life Time Cancer Risk formulas (ILTCR). When drinking Ni-contaminated water, humans are more at risk of developing cancer (0.0031) than Fe and Cu. Metal concentrations in water and brassica showed substantially more scattered behaviour on the plot and no meaningful relationship, although PCA and masked matrix correlation showed a fair association between Ni and Cu in brassica (r2: 0.46) and Fe and Ni in spinach (r2: 0.31). According to the study's findings, it is anticipated that special management and groundwater monitoring will be needed in the examined area to reduce the health risks related to drinking water that has been contaminated with metals.


Asunto(s)
Agua Potable , Metales Pesados , Neoplasias , Contaminantes del Suelo , Animales , Humanos , Monitoreo del Ambiente/métodos , Ecosistema , Contaminantes del Suelo/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Residuos Industriales/análisis , Suelo , Medición de Riesgo
3.
Luminescence ; 38(9): 1624-1631, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37386874

RESUMEN

Using the melt quenching technique, a lithium zinc borate glass (LZB) system with trivalent dysprosium ions (Dy3+ ) was synthesized, and the luminescence and lasing properties of these materials were examined for the generation of white light. Structural investigation through X-ray diffraction revealed that the prepared glass had an amorphous nature. The optimized glass containing 0.5 Dy3+ had a direct optical band gap of 2.782 eV and an indirect optical band gap of 3.110 eV. A strong excitation band at 386 nm (6 H15/2 →4 I13/2 ) was recognized in the ultraviolet (UV) light region of its excitation spectrum. Emission bands could be seen in the photoluminescence spectrum at 659, 573, and 480 nm under the 386 nm excitation. These transitions of emission resembled electronic transitions such as (4 F9/2 →6 H11/2 ), (4 F9/2 →6 H13/2 ), and (4 F9/2 →6 H15/2 ). In a pristine glass matrix, the higher intensity ratio of yellow to blue can result in the production of white light. The optimized Dy3+ ion concentration was observed to be 0.5 mol%. In addition, an analysis of lifetime decay was conducted for all synthesized glasses, and their decay trends were systematically investigated. Noticeably, we assessed the photometric parameters and found that they were close to the white light standard. Furthermore, a cytotoxicity study was carried out using lung fibroblast (WI-38) cell lines for the optimized 0.5Dy3+ -doped LZB glass and it appeared to be noncytotoxic. It is clear from the results that the noncytotoxic LZB glass doped with 0.5 Dy3+ ions could be a suggestive choice for the manufacture of white light-emitting diodes and lasers using near-UVs.


Asunto(s)
Luz , Luminiscencia , Rayos Ultravioleta , Mediciones Luminiscentes , Iones
4.
Environ Res ; 231(Pt 2): 116147, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37187307

RESUMEN

Both the environment and human health have suffered as a result of excessive and irrational pesticide use. The human body is vulnerable to a wide range of illnesses brought on by prolonged exposure to or intake of food contaminated with pesticide residues, including immunological and hormonal abnormalities and the development of certain tumors. Sensors based on nanoparticles stand out from more conventional spectrophotometry analytical methods due to their low detection limits, high sensitivity, and ease of use; that is why the demand for simple, fast, and less expensive sensing methods increases daily and presents myriad uses. Such demands are fulfilled by employing paper-based analytical devices having intrinsic properties. The presented work reports an on-site, easy-to-handle, and disposable paper-based sensing device for performing fast screening along with readout from a smartphone. The fabricated device utilizes luminescent silica quantum dots, immobilized into a paper cellulose matrix, and the resonance energy transfer phenomenon is employed. The silica quantum dots probes were fabricated from citric acid and, by undergoing physical adsorption, were confined on the nitrocellulose substrate in small wax-traced spots. The silica quantum dots were excited by smartphone ultraviolet LED, acting as an energy source and for capturing the image. The obtained LOD is 0.054 µM, and the coefficient of variation is less than 6.1%, comparable to the result obtained by UV-Visible and fluorometric analysis under similar experimental conditions. In addition, high reproducibility (≥9.8%) and high recovery ≥90% were obtained in spiked blood samples. The fabricated sensor sensitively detected pesticides giving a LOD of 2.5 ppm along with the development of yellow color within a short period of 5 min. The sensor functions well when sophisticated instrumentation is not accessible. The presented work shows the potential of the paper strip for the on-site detection of pesticides in biological and environmental samples.


Asunto(s)
Plaguicidas , Puntos Cuánticos , Humanos , Plaguicidas/análisis , Puntos Cuánticos/química , Dióxido de Silicio/química , Reproducibilidad de los Resultados , Luminiscencia
5.
Chemosphere ; 312(Pt 2): 137327, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36410509

RESUMEN

Green production of nanomaterials are restrict toxic substances and motivated the noxious free environment. Photocatalysis and antibacterial resistance are more promising and efficient fields for their chemical reductants and clean environment. Herein, we adopted a green and simple method for the biosynthesis of MgO NPs using Manilkara zapota as a bio source. Recently, the green synthesis of magnesium oxide nanoparticles has been a keen interest amongst researchers and scientists due to its simplicity eco-friendliness, non-toxic, inexpensive and potential to perform as an antibacterial agent. Activated carbon/Magnesium oxide (AC/MgO) photocatalyst was blended through a simple solution evaporation method. The surface electron microscopy (SEM) study reviles that AC/MgO had smooth and aggregated particles. The Fourier transform infrared (FT-IR) and x-ray diffraction (XRD) study confirms the structural formation and incorporation of nanoparticles into the AC matrix. Results confirmed the flourishing integration of MgO NPs over the activated carbon matrix. The electron movement and valency of AC/MgO photocatalyst reduced the bandgap and their findings were characterized by ultra visible diffuse reflectance spectroscopy (UV-DRS) and x-ray photoelectron spectroscopy (XPS). The blended AC/MgO photocatalyst was analyzed for photodegradation of Rhodamine- B (Rh-B) dye using a UV-visible spectrophotometer. The degradation study projects that the AC/MgO photocatalyst degrades (Rh-B) dye with 99% efficiency under simulated solar irradiation. This efficient degradation of (Rh-B) dye by AC/MgO photocatalyst is ascribed to the synergetic AC as catalytic support and adsorbent and MgO as photocatalyst. Finally, the photocatalytic material shows a better bactericidal effect in both gram-positive bacteria Escherichia coli-745 and gram-negative bacteria Staphylococcus aureus-9779. The AC/MgO photocatalyst is effectively used in bacteriocidal and photocatalytic removal of dyes and can be used for further development of water reuse and bio-medical fields. In addition, this research shows a viable method for synthesizing a cheap and effective AC/MgO for the photocatalytic destruction of organic pollutants.


Asunto(s)
Óxido de Magnesio , Nanopartículas , Óxido de Magnesio/farmacología , Carbón Orgánico/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Colorantes , Escherichia coli
6.
Chemosphere ; 310: 136841, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36243088

RESUMEN

Implication of natural resources for manufacturing of nanoparticles is sustainable, economical and contaminant free approach towards ecological and medical applications. Herein, CeO2 and Ag/CeO2 nanoparticles are green synthesized from Morinda tinctoria plant extract. The phase structure, surface morphology, optical identity, Ce(III) and Ce(IV) valency of the synthesized CeO2 and Ag/CeO2 nanoparticles are explored. The X-ray diffraction analysis indicated the formation of cubic phase CeO2 and cubic silver decorated CeO2 nanoparticles. Fourier transform infrared (FTIR) spectroscopy revealed the metal decoration of CeO2 nanoparticles, metal-oxygen stretching, indicating the plant molecules reduction and stabilization. UV-visible spectroscopy shown the decreased band gap owing to silver modification. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs displayed spherical morphology of the nanoparticles. Elemental composition and sample purity is assessed by energy dispersive spectroscopy (EDS). Double oxidation of Ce, double splitting energy of Ag and lattice oxygen are observed from X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of Ag/CeO2 exposed the enhanced photocatalytic activity up to 94% where CeO2 nanoparticles gave 60% degradation of bromophenol blue (BB). The plasmonic decoration of silver on the ceria surface induced the charge separations and free radical reactions. Moreover, Ag/CeO2 nanoparticles are seen as superior antibacterial agents than CeO2 towards both E.coli and S.aureus. Hence, the silver decorated metal oxide photocatalyst successfully degraded the BB dye and inactivated the bacterial strains. This report established a future research in green synthesis of multipurpose metal nanoparticles.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/química , Antibacterianos/química , Extractos Vegetales/química , Nanopartículas del Metal/química , Escherichia coli , Espectroscopía Infrarroja por Transformada de Fourier , Oxígeno , Difracción de Rayos X , Tecnología Química Verde
7.
J Sep Sci ; 45(4): 804-811, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34894085

RESUMEN

A comparative study of chiral separation of pantoprazole and rabeprazole is carried out using supercritical fluid chromatography and high-performance liquid chromatography. The columns used were Chiralpak IA and Chiralpak IE. The best mobile phase in supercritical fluid chromatography was carbon dioxide-0.2% triethylamine in methanol (60:40) and 0.1% triethylamine in n-hexane-ethanol (50:50) in high-performance liquid chromatography. For supercritical fluid chromatography, values of the retention factor of pantoprazole enantiomers were 3.97 and 4.88. These values for rabeprazole enantiomers were 6.10 and 7.52. The values of separation and resolution factor for pantoprazole and rabeprazole were 1.23 and 1.23 and 2.20 and 3.36, respectively. Similarly, for high-performance liquid chromatography, the values of retention factor for enantiomers of pantoprazole were 4.02 and 7.32. These values for rabeprazole enantiomers were 5.32 and 7.88, respectively. The values of separation and resolution factor for pantoprazole and rabeprazole were 1.82 and 1.48 and 9.22 and 6.58, respectively. A comparison was carried out, which confirmed supercritical fluid chromatography as the best method due to its fastness, eco-friendly, and inexpensiveness. The reported methods are effective, efficient, and reproducible and may be used to separate and identify pantoprazole and rabeprazole in any unknown samples.


Asunto(s)
Cromatografía con Fluido Supercrítico , Inhibidores de la Bomba de Protones , Cromatografía Líquida de Alta Presión , Cromatografía con Fluido Supercrítico/métodos , Pantoprazol , Inhibidores de la Bomba de Protones/química , Rabeprazol , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...