Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
PLoS One ; 18(10): e0290119, 2023.
Article En | MEDLINE | ID: mdl-37782661

Patients must always communicate with their doctor for checking their health status. In recent years, wireless body sensor networks (WBSNs) has an important contribution in Healthcare. In these applications, energy-efficient and secure routing is really critical because health data of individuals must be forwarded to the destination securely to avoid unauthorized access by malicious nodes. However, biosensors have limited resources, especially energy. Recently, energy-efficient solutions have been proposed. Nevertheless, designing lightweight security mechanisms has not been stated in many schemes. In this paper, we propose a secure routing approach based on the league championship algorithm (LCA) for wireless body sensor networks in healthcare. The purpose of this scheme is to create a tradeoff between energy consumption and security. Our approach involves two important algorithms: routing process and communication security. In the first algorithm, each cluster head node (CH) applies the league championship algorithm to choose the most suitable next-hop CH. The proposed fitness function includes parameters like distance from CHs to the sink node, remaining energy, and link quality. In the second algorithm, we employs a symmetric encryption strategy to build secure connection links within a cluster. Also, we utilize an asymmetric cryptography scheme for forming secure inter-cluster connections. Network simulator version 2 (NS2) is used to implement the proposed approach. The simulation results show that our method is efficient in terms of consumed energy and delay. In addition, our scheme has good throughput, high packet delivery rate, and low packet loss rate.


Computer Communication Networks , Wireless Technology , Humans , Computer Simulation , Algorithms , Delivery of Health Care
2.
Comput Intell Neurosci ; 2022: 3035426, 2022.
Article En | MEDLINE | ID: mdl-35634075

The lungs are COVID-19's most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high mortality rate may, in certain circumstances, occur. Radiological pulmonary evaluation is a vital part of patient therapy for the critically ill patient with COVID-19. The evaluation of radiological imagery is a specialized activity that requires a radiologist. Artificial intelligence to display radiological images is one of the essential topics. Using a deep machine learning technique to identify morphological differences in the lungs of COVID-19-infected patients could yield promising results on digital images of chest X-rays. Minor differences in digital images that are not detectable or apparent to the human eye may be detected using computer vision algorithms. This paper uses machine learning methods to diagnose COVID-19 on chest X-rays, and the findings have been very promising. The dataset includes COVID-19-enhanced X-ray images for disease detection using chest X-ray images. The data were gathered from two publicly accessible datasets. The feature extractions are done using the gray level co-occurrence matrix methods. K-nearest neighbor, support vector machine, linear discrimination analysis, naïve Bayes, and convolutional neural network methods are used for the classification of patients. According to the findings, convolutional neural networks' efficiency linked to imaging modalities with fewer human involvements outperforms other traditional machine learning approaches.


Artificial Intelligence , COVID-19 , Bayes Theorem , COVID-19/diagnostic imaging , Humans , Machine Learning , Neural Networks, Computer
...