Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1392789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011147

RESUMEN

The rapid global emergence of antibiotic resistance genes (ARGs) is a substantial public health concern. Livestock manure serves as a key reservoir for tetracycline resistance genes (TRGs), serving as a means of their transmission to soil and vegetables upon utilization as a fertilizer, consequently posing a risk to human health. The dynamics and transfer of TRGs among microorganisms in vegetables and fauna are being investigated. However, the impact of different vegetable species on acquisition of TRGs from various manure sources remains unclear. This study investigated the rhizospheres of three vegetables (carrots, tomatoes, and cucumbers) grown with chicken, sheep, and pig manure to assess TRGs and bacterial community compositions via qPCR and high-throughput sequencing techniques. Our findings revealed that tomatoes exhibited the highest accumulation of TRGs, followed by cucumbers and carrots. Pig manure resulted in the highest TRG levels, compared to chicken and sheep manure, in that order. Bacterial community analyses revealed distinct effects of manure sources and the selective behavior of individual vegetable species in shaping bacterial communities, explaining 12.2% of TRG variation. Firmicutes had a positive correlation with most TRGs and the intl1 gene among the dominant phyla. Notably, both the types of vegetables and manures significantly influenced the abundance of the intl1 gene and soil properties, exhibiting strong correlations with TRGs and elucidating 30% and 17.7% of TRG variance, respectively. Our study delineated vegetables accumulating TRGs from manure-amended soils, resulting in significant risk to human health. Moreover, we elucidated the pivotal roles of bacterial communities, soil characteristics, and the intl1 gene in TRG fate and dissemination. These insights emphasize the need for integrated strategies to reduce selection pressure and disrupt TRG transmission routes, ultimately curbing the transmission of tetracycline resistance genes to vegetables.

2.
Bot Stud ; 65(1): 20, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995467

RESUMEN

Heavy metals stress particularly cadmium contamination is hotspot among researchers and considered highly destructive for both plants and human health. Iron is examined as most crucial element for plant development, but it is available in inadequate amount because they are present in insoluble Fe3+ form in soil. Fe3O4 have been recently found as growth promoting factor in plants. To understand, a sand pot experiment was conducted in completely randomized design (control, cadmium, 20 mg/L Fe3O4 nanoparticles,40 mg/L Fe3O4 nanoparticles, 20 mg/L Fe3O4 nanoparticles + cadmium, 40 mg/L Fe3O4 nanoparticles + cadmium) to study the mitigating role of Fe3O4 nanoparticles on cadmium stress in three Raphanus sativus cultivars namely i.e., MOL SANO, MOL HOL PARI, MOL DAQ WAL. The plant growth, physiological and biochemical parameters i.e.,shoot length, shoot fresh weight, shoot dry weight, root length, root fresh and dry weight, MDA content, soluble protein contents, APX, CAT, POD activities and ion concentrations, membrane permeability, chlorophyll a, chlorophyll b and anthocyanin content, respectively were studied. The results displayed that cadmium stress remarkably reduces all growth, physiological and biochemical parameters for allcultivars under investigation. However, Fe3O4 nanoparticles mitigated the adverse effect of cadmium by improving growth, biochemical and physiological attributes in all radish cultivars. While, 20 mg/L Fe3O4 nanoparticles have been proved to be more useful against cadmium stress. The outcome of present investigation displayed that Fe3O4 nanoparticles can be utilized for mitigating heavy metal stress.

3.
Physiol Plant ; 176(3): e14379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38853306

RESUMEN

Drought stress threatens the productivity of numerous crops, including chilli pepper (Capsicum annuum). DnaJ proteins are known to play a protective role against a wide range of abiotic stresses. This study investigates the regulatory mechanism of the chloroplast-targeted chaperone protein AdDjSKI, derived from wild peanut (Arachis diogoi), in enhancing drought tolerance in chilli peppers. Overexpressing AdDjSKI in chilli plants increased chlorophyll content, reflected in the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with untransformed control (UC) plants. This enhancement coincided with the upregulated expression of PSII-related genes. Our subsequent investigations revealed that transgenic chilli pepper plants expressing AdDjSKI showed reduced accumulation of superoxide and hydrogen peroxide and, consequently, lower malondialdehyde levels and decreased relative electrolyte leakage percentage compared with UC plants. The mitigation of ROS-mediated oxidative damage was facilitated by heightened activities of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, coinciding with the upregulation of the expression of associated antioxidant genes. Additionally, our observations revealed that the ectopic expression of the AdDjSKI protein in chilli pepper plants resulted in diminished ABA sensitivity, consequently promoting seed germination in comparison with UC plants under different concentrations of ABA. All of these collectively contributed to enhancing drought tolerance in transgenic chilli plants with improved root systems when compared with UC plants. Overall, our study highlights AdDjSKI as a promising biotechnological solution for enhancing drought tolerance in chilli peppers, addressing the growing global demand for this economically valuable crop.


Asunto(s)
Ácido Abscísico , Capsicum , Sequías , Fotosíntesis , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno , Capsicum/fisiología , Capsicum/genética , Capsicum/metabolismo , Fotosíntesis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arachis/genética , Arachis/fisiología , Arachis/metabolismo , Regulación de la Expresión Génica de las Plantas , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Antioxidantes/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Resistencia a la Sequía
4.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792069

RESUMEN

A highly efficient low-cost adsorbent was prepared using raw and chemically modified cellulose isolated from sugarcane bagasse for decontamination of Cr(VI) from wastewater. First, cellulose pulp was isolated from sugarcane bagasse by subjecting it to acid hydrolysis, alkaline hydrolysis and bleaching with sodium chlorate (NaClO3). Then, the bleached cellulose pulp was chemically modified with acrylonitrile monomer in the presence Fenton's reagent (Fe+2/H2O2) to carry out grafting of acrylonitrile onto cellulose by atom transfer radical polymerization. The developed adsorbent (acrylonitrile grafted cellulose) was analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Both raw cellulose and acrylonitrile grafted cellulose were used for chromium removal from wastewater. The effects of metal ion concentration, pH, adsorbent dose and time were studied, and their values were optimized. The optimum conditions for the adsorption of Cr(VI) onto raw and chemically modified cellulose were: metal ion concentration: 50 ppm, adsorbent dose: 1 g, pH: 6, and time: 60 min. The maximum efficiencies of 73% and 94% and adsorption capacities of 125.95 mg/g and 267.93 mg/g were achieved for raw and acrylonitrile grafted cellulose, respectively. High removal efficiency was achieved, owing to high surface area of 79.92 m2/g and functional active binding cites on grafted cellulose. Isotherm and kinetics studies show that the experimental data were fully fitted by the Freundlich isotherm model and pseudo first-order model. The adsorbent (acrylonitrile grafted cellulose) was regenerated using three different types of regenerating reagents and reused thirty times, and there was negligible decrease (19%) in removal efficiency after using it for 30 times. Hence, it is anticipated that acrylonitrile could be utilized as potential candidate material for commercial scale Cr(VI) removal from wastewater.


Asunto(s)
Acrilonitrilo , Celulosa , Cromo , Saccharum , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Celulosa/química , Cromo/aislamiento & purificación , Cromo/química , Acrilonitrilo/química , Saccharum/química , Aguas Residuales/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
6.
Mol Biol Rep ; 51(1): 527, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637351

RESUMEN

BACKGROUND: SnRK2 plays vital role in responding to adverse abiotic stimuli. The applicability of TaSnRK2.4 and TaSnRK2.9 was investigated to leverage the potential of these genes in indigenous wheat breeding programs. METHODS: Genetic diversity was assessed using pre-existing markers for TaSnRK2.4 and TaSnRK2.9. Furthermore, new markers were also developed to enhance their broader applicability. KASP markers were designed for TaSnRK2.4, while CAPS-based markers were tailored for TaSnRK2.9. RESULTS: Analysis revealed lack of polymorphism in TaSnRK2.4 among Pakistani wheat germplasm under study. To validate this finding, available gel-based markers for TaSnRK2.4 were employed, producing consistent results and offering limited potential for application in marker-assisted wheat breeding with Pakistani wheat material. For TaSnRK2.9-5A, CAPS2.9-5A-1 and CAPS2.9-5A-2 markers were designed to target SNP positions at 308 nt and 1700 nt revealing four distinct haplotypes. Association analysis highlighted the significance of Hap-5A-1 of TaSnRK2.9-5A, which exhibited association with an increased number of productive tillers (NPT), grains per spike (GPS), and reduced plant height (PH) under well-watered (WW) conditions. Moreover, it showed positive influence on NPT under WW conditions, GPS under water-limited (WL) conditions, and PH under both WW and WL conditions. High selection intensity observed for Hap-5A-1 underscores the valuable role it has played in Pakistani wheat breeding programs. Gene expression studies of TaSnRK2.9-5A revealed the involvement of this gene in response to PEG, NaCl, low temperature and ABA treatments. CONCLUSION: These findings propose that TaSnRK2.9 can be effectively employed for improving wheat through marker-assisted selection in wheat breeding efforts.


Asunto(s)
Resistencia a la Sequía , Triticum , Triticum/metabolismo , Genotipo , Fitomejoramiento , Pan , Proteínas de Plantas/genética
7.
Funct Plant Biol ; 512024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38493797

RESUMEN

Wheat (Triticum aestivum L.) is the most extensively cultivated cereal crop in the world; however, its growth and development are affected by different types of biotic and abiotic stress conditions. The aim of this study was to assess the physico-chemical diversity in different wheat genotypes under rain-fed conditions. Principle component analysis (PCA) showed that significant variation for different components contributed 77.87% of total variability among all genotypes. In the scree plot, the first two PCs (PC1=44.75%, PC2=14.28%) had significant differences for numerous agronomic traits. The scatter biplot depicted eight genotypes (Zardana, NR-462, D-97, BARS-2009 (a check), NR-481, Tarnab-73, NR-489 and Pirsabak-91) with high diversity (variation ~90%) for different morphological traits, identifiable as they were located further away from the origin than other genotypes. Factor analysis of loading factors among wheat genotypes across different morpho-physiological traits also showed significant diversity for positive and negative loads. In cluster analysis, genotypes such as BWP-97, BARS-2009, NR-489, NR-448 and Pak. 13 were outliers, indicating significant diversity among all genotypes for different agronomic traits. Biochemical analysis showed maximum values for antioxidant activity, total phenolic content, and total flavonoid content in lines NR-485 (93.76%), NR-489 (3.55mg gallic acid equivalent (GAE)/g), and the variety Suleman-96 (3.45mg quercetin equivalent (QE)/g), respectively. This study provides new insights for understanding the diversity of different wheat genotypes under rain-fed conditions, and the selected genotypes can be evaluated for further breeding programs.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Genotipo , Fenotipo , Lluvia
8.
GM Crops Food ; 15(1): 130-149, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38551174

RESUMEN

Global crop yield has been affected by a number of abiotic stresses. Heat, salinity, and drought stress are at the top of the list as serious environmental growth-limiting factors. To enhance crop productivity, molecular approaches have been used to determine the key regulators affecting stress-related phenomena. MYB transcription factors (TF) have been reported as one of the promising defensive proteins against the unfavorable conditions that plants must face. Different roles of MYB TFs have been suggested such as regulation of cellular growth and differentiation, hormonal signaling, mediating abiotic stress responses, etc. To gain significant insights, a comprehensive in-silico analysis of OsMYB TF was carried out in comparison with 21 dicot MYB TFs and 10 monocot MYB TFs. Their chromosomal location, gene structure, protein domain, and motifs were analyzed. The phylogenetic relationship was also studied, which resulted in the classification of proteins into four basic groups: groups A, B, C, and D. The protein motif analysis identified several conserved sequences responsible for cellular activities. The gene structure analysis suggested that proteins that were present in the same class, showed similar intron-exon structures. Promoter analysis revealed major cis-acting elements that were found to be responsible for hormonal signaling and initiating a response to abiotic stress and light-induced mechanisms. The transformation of OsMYB TF into tobacco was carried out using the Agrobacterium-mediated transformation method, to further analyze the expression level of a gene in different plant parts, under stress conditions. To summarize, the current studies shed light on the evolution and role of OsMYB TF in plants. Future investigations should focus on elucidating the functional roles of MYB transcription factors in abiotic stress tolerance through targeted genetic modification and CRISPR/Cas9-mediated genome editing. The application of omics approaches and systems biology will be indispensable in delineating the regulatory networks orchestrated by MYB TFs, facilitating the development of crop genotypes with enhanced resilience to environmental stressors. Rigorous field validation of these genetically engineered or edited crops is imperative to ascertain their utility in promoting sustainable agricultural practices.


Asunto(s)
Nicotiana , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Nicotiana/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Productos Agrícolas/genética , Estrés Fisiológico/genética
9.
Sci Rep ; 14(1): 3736, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355953

RESUMEN

Bioactive compounds are secondary metabolites of plants. They offer diverse pharmacological properties. Peganum harmala is reported to have pharmaceutical effects like insecticidal, antitumor, curing malaria, anti-spasmodic, vasorelaxant, antihistaminic effect. Rosa brunonii has medicinal importance in its flower and fruits effective against different diseases and juice of leaf is reported to be applied externally to cure wounds and cuts. Dryopteris ramosa aqueous leaf extract is used to treat stomach ulcers and stomachaches. Each of these three medicinal plants have been indicated to have anticancer, antiviral, antioxidant, cytotoxic and antifungal effects but efficacy of their bioactive compounds remained unexplored. Study was aimed to explore In-vitro and In-silico anticancer, antiviral, antioxidant, cytotoxic and antifungal effects of bioactive compounds of above three medicinal plants. DPPH and ABTS assay were applied for assessment of antioxidant properties of compounds. Antibacterial properties of compounds were checked by agar well diffusion method. Brine shrimp lethality assay was performed to check cytotoxic effect of compounds. Molecular docking was conducted to investigate the binding efficacy between isolated compounds and targeted proteins. The compound isomangiferrin and tiliroside presented strong antioxidant potential 78.32% (± 0.213) and 77.77% (± 0.211) respectively in DPPH assay while harmaline showed 80.71% (± 0.072) at 200 µg/mL in ABTS assay. The compound harmine, harmaline and PH-HM 17 exhibited highest zone of inhibition 22 mm, 23 mm, 22 mm respectively against Xanthomonas while Irriflophenone-3-C-ß- D-glucopyranoside showed maximum zone of inhibition 34 mm against E. coli. The compound isomangiferrin and vasicine contained strong antibacterial activity 32 mm and 22 mm respectively against S. aureus. The compound mangiferrin, astragalin, tiliroside, quercitin-3-O-rhamnoside showed maximum inhibitory zone 32 mm, 26 mm, 24 mm and 22 mm respectively against Klebsiella pneumoniae. Highest cytotoxic effect was observed by compound tiliroside i.e. 95% with LD50 value 73.59 µg/mL. The compound tiliroside showed the best binding mode of interaction to all targeted proteins presenting maximum hydrophobic interactions and hydrogen bonds. The binding affinity of tiliroside was - 17.9, - 14.9, - 14.6, - 13.8, - 12.8 against different proteins 6VAR, 5C5S, IEA3, 2XV7 and 6LUS respectively. Bioactive compounds are significant natural antioxidants, which could help to prevent the progression of various diseases caused by free radicals. Based on molecular docking we have concluded that phytochemicals can have better anticancer and antiviral potential.


Asunto(s)
Benzotiazoles , COVID-19 , Plantas Medicinales , Ácidos Sulfónicos , Plantas Medicinales/química , Extractos Vegetales/química , Simulación del Acoplamiento Molecular , Antifúngicos , Antioxidantes/química , Harmalina , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Antivirales/farmacología
10.
BMC Chem ; 17(1): 142, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880684

RESUMEN

[1,8]-Naphthyridine derivatives have been reported to possess important biological activities and may serve as attractive pharmacophores in the drug discovery process. [1,8]-Naphthyridine derivatives (1a-1l) were evaluated for inhibitory potential for isozymes of carbonic anhydrase (CA) and alkaline phosphatase (ALP). CAs have been reported to carry out reversible hydration of CO2 into HCO3-, secretion of electrolytes, acid-base regulation, bone resorption, calcification, and biosynthetic reactions. Whereas ALPs hydrolyze monophosphate esters with the release of inorganic phosphate and play an important role in bone mineralization. Both enzymes have been found to be over-expressed and raised functional activities in patients suffering from rheumatoid arthritis. The discovery of dual inhibitors of these enzymes may provide a synergistic effect to cure bone disorders such as rheumatoid arthritis and ankylosing spondylitis. Among the test compounds, the most potent inhibitors for CA-II, CA-IX, and CA-XII were 1e, 1g, and 1a with IC50 values of 0.44 ± 0.19, 0.11 ± 0.03 and 0.32 ± 0.07 µM, respectively. [1,8]-Naphthyridine derivatives (1a-1l) were approximately 4 folds more potent than standard CA inhibitor acetazolamide. While in the case of ALPs, the most potent compounds for b-TNAP and c-IAP were 1b and 1e with IC50 values of 0.122 ± 0.06 and 0.107 ± 0.02 µM, respectively. Thus, synthesized derivatives proved to be 100 to 800 times more potent as compared to standard inhibitors of b-TNAP and c-IAP (Levamisole and L-phenyl alanine, respectively). In addition, selectivity and dual inhibition of [1,8]-Naphthyridine derivatives confer precedence over known inhibitors. Molecular docking and molecular simulation studies were also conducted in the present studies to define the type of interactions between potential inhibitors and enzyme active sites.

11.
Heliyon ; 9(9): e19625, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809795

RESUMEN

One of the major causes of blindness in human beings is the diabetic retinopathy (DR). To prevent blindness, early detection of DR is therefore necessary. In this paper, a hybrid model is proposed for diagnosing DR from fundus images. A combination of morphological image processing and Inception v3 deep learning techniques are exploited to detect DR as well as to classify healthy, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative DR (PDR). The proposed algorithm was carried out in several steps such as segmentation of blood vessels, localization and removal of optic disc, and macula, abnormal features detection (microaneurysms, hemorrhages, and neovascularization), and classification. Microaneurysms and hemorrhages that appear in the retina are the early signs of DR. In this work, we have detected microaneurysms and hemorrhages by applying dynamic contrast limited adaptive histogram equalization and threshold value on overlapping patched images. An overall accuracy of 96.83% is obtained to classify DR into five different stages. The better performance demonstrates the effectiveness and novelty of the proposed work as compared to the recent reported work.

12.
PeerJ ; 11: e15646, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456879

RESUMEN

Sugarcane is one of the critical commercial crops and principal sources of ethanol and sugar worldwide. Unfavorable conditions and poor seed setting rates hinder variety development in sugarcane. Countries like Pakistan directly import fuzz (true seed) and other propagation material from the USA, China, Brazil, etc. In this study, we imported fuzz from China, developed 29 genotypes germinating in the glasshouse, and evaluated at field conditions along with two local checks (CPF-251 and HSF-240). Morphophysiological data were recorded, including plant height (PH), cane length (CL), internodal length (IL), tiller number (TN), brix percentage (B), cane diameter (CD), chlorophyll a (Chl. a), chlorophyll b (Chl. b), and total chlorophyll (T. Chl). Results showed highly significant (p < 0.001) differences among the sugarcane accessions for all the studied traits. High broad-sense heritability (81.89% to 99.91%) was recorded for all the studied parameters. Genetic Advance (GA) ranges from 4.6% to 65.32%. The highest GA was observed for PH (65.32%), followed by CL (63.28%). Chlorophyll leaching assay was also performed at different time points (0, 50, 100, 150, and 200 min). All the genotypes showed the same leaching trend at all times, and better performing genotypes showed less leaching compared to poor performing, indicating the high amount of cutin and wax on the leaf surface. Correlation analysis showed that PH, CL, IL, and TN had significant associations. Principal components analysis (PCA) further confirms these results. Based on PCA and correlation results, PH, CL, IL, and TN can be utilized as a selection criterion for sugarcane improvement. Genotypes such as NS-4a, NS-5, NS-6, NS-8, NS-9, and NS-15 are recommended for future breeding programs related to sugarcane variety development.


Asunto(s)
Saccharum , Saccharum/genética , Clorofila A , Fitomejoramiento/métodos , Fenotipo , Genotipo , Grano Comestible
13.
RSC Adv ; 13(27): 18461-18479, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37346960

RESUMEN

The aberrant level of the carbonic anhydrase isozymes is linked with various disorders which include glaucoma, epilepsy, altitude sickness and obesity. In the present study, a series of the pyrazole-based benzene sulfonamides derivatives (4a-4l) were designed, synthesized and evaluated as the inhibitors of the three isoforms of human carbonic anhydrases (hCAII, hCAIX and hCAXII). A number of the derivatives were found more active inhibitors than acetazolamide used as a standard against the human hCAII, hCAIX and hCAXII. Among the series, the compound 4k inhibited the hCAII to a submicromolar level presenting the IC50 ± SEM concentration of 0.24 ± 0.18 µM, the inhibitor 4j reduced the activity of the hCAIX to the IC50 ± SEM equals 0.15 ± 0.07 µM, whereas, the molecule 4g blocked the catalytic potential of the isozyme hCAXII with as low as IC50 concentration of 0.12 ± 0.07 µM. In addition, compounds 4e and 4k were screened as the preferential inhibitors of the isoform hCAXII as compared to the hCAIX and hCAXII with half of the maximal concentrations of 0.75 ± 0.13 µM, and 0.24 ± 0.18 µM, respectively. Moreover, the compounds 4k, 4j and 4g were docked inside the active pocket of the crystallographic structure of the isoforms hCAXII, hCAIX and hCAXII, respectively. The docked inhibitors showed the binding interactions with the important amino acid residues such as Leu1198, Thr1199, His1094, and Phe1131 in hCAXII isozyme; residues Val121, Thr200, Pro203, and Gln71 in hCAIX; the amino acids Val119, Leu197, Gln89, and Asn64 in the case of hCAXII. In addition, structural geometries, reactivity descriptors, optimization energy and electronic parameters were calculated to predict the activity of the synthesized compounds.

14.
Front Chem ; 11: 1137444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970406

RESUMEN

Introduction: PIM kinases are targets for therapeutic intervention since they are associated with a number of malignancies by boosting cell survival and proliferation. Over the past years, the rate of new PIM inhibitors discovery has increased significantly, however, new generation of potent molecules with the right pharmacologic profiles were in demand that can probably lead to the development of Pim kinase inhibitors that are effective against human cancer. Method: In the current study, a machine learning and structure based approaches were used to generate novel and effective chemical therapeutics for PIM-1 kinase. Four different machine learning methods, namely, support vector machine, random forest, k-nearest neighbour and XGBoost have been used for the development of models. Total, 54 Descriptors have been selected using the Boruta method. Results: SVM, Random Forest and XGBoost shows better performance as compared to k-NN. An ensemble approach was implemented and, finally, four potential molecules (CHEMBL303779, CHEMBL690270, MHC07198, and CHEMBL748285) were found to be effective for the modulation of PIM-1 activity. Molecular docking and molecular dynamic simulation corroborated the potentiality of the selected molecules. The molecular dynamics (MD) simulation study indicated the stability between protein and ligands. Discussion: Our findings suggest that the selected models are robust and can be potentially useful for facilitating the discovery against PIM kinase.

15.
Viruses ; 14(12)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36560596

RESUMEN

With the emergence of SARS-CoV-2, routine surveillance combined with sequence and phylogenetic analysis of coronaviruses is urgently required. In the current study, the four common human coronaviruses (HCoVs), OC43, NL63, HKU1, and 229E, were screened in 361 clinical samples collected from hospitalized children with respiratory symptoms during four winter seasons. RT-PCR-based detection and typing revealed different prevalence rates of HCoVs across the four seasons. Interestingly, none of the four HCoVs were detected in the samples (n = 100) collected during the winter season of the COVID-19 pandemic. HCoV-OC43 (4.15%) was the most frequently detected, followed by 229E (1.1%). Partial sequences of S and N genes of OC43 from the winter seasons of 2015/2016 and 2021/2022 were used for sequence and phylogenetic analysis. Multiple sequence alignment of the two Saudi OC43s strains with international strains revealed the presence of sequence deletions and several mutations, of which some changed their corresponding amino acids. Glycosylation profiles revealed a number of O-and N-glycosylation sites in both genes. Based on phylogenetic analysis, four genotypes were observed with Riyadh strains grouped into the genotype C. Further long-term surveillance with a large number of clinical samples and sequences is necessary to resolve the circulation patterns and evolutionary kinetics of OC43 in Saudi Arabia.


Asunto(s)
COVID-19 , Coronavirus Humano OC43 , Infecciones del Sistema Respiratorio , Humanos , Niño , Filogenia , Coronavirus Humano OC43/genética , Arabia Saudita/epidemiología , Prevalencia , Pandemias , COVID-19/epidemiología , SARS-CoV-2/genética , Estaciones del Año
16.
PLoS One ; 17(10): e0271262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36264868

RESUMEN

Asthma is a life-threatening and chronic inflammatory lung disease that is posing a true global health challenge. The genetic basis of the disease is fairly well examined. However, the molecular crosstalk between microRNAs (miRNAs), target genes, and transcription factors (TFs) networks and their contribution to disease pathogenesis and progression is not well explored. Therefore, this study was aimed at dissecting the molecular network between mRNAs, miRNAs, and TFs using robust computational biology approaches. The transcriptomic data of bronchial epithelial cells of severe asthma patients and healthy controls was studied by different systems biology approaches like differentially expressed gene detection, functional enrichment, miRNA-target gene pairing, and mRNA-miRNA-TF molecular networking. We detected the differential expression of 1703 (673 up-and 1030 down-regulated) genes and 71 (41 up-and 30 down-regulated) miRNAs in the bronchial epithelial cells of asthma patients. The DEGs were found to be enriched in key pathways like IL-17 signaling (KEGG: 04657), Th1 and Th2 cell differentiation (KEGG: 04658), and the Th17 cell differentiation (KEGG: 04659) (p-values = 0.001). The results from miRNAs-target gene pairs-transcription factors (TFs) have detected the key roles of 3 miRs (miR-181a-2-3p; miR-203a-3p; miR-335-5p), 6 TFs (TFAM, FOXO1, GFI1, IRF2, SOX9, and HLF) and 32 miRNA target genes in eliciting autoimmune reactions in bronchial epithelial cells of the respiratory tract. Through systemic implementation of comprehensive system biology tools, this study has identified key miRNAs, TFs, and miRNA target gene pairs as potential tissue-based asthma biomarkers.


Asunto(s)
Asma , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Biología de Sistemas , Redes Reguladoras de Genes , Interleucina-17/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Biología Computacional/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Asma/genética , Biomarcadores
17.
Front Public Health ; 10: 845741, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615037

RESUMEN

Background: COVID-19 survivor's population is often associated with a long term impact on mental and psychological health. Recent included studies have also stated affliction of mental health due to fear of virus and preventive policies among the college students. Objectives: The research was conducted to find the psychological and mental impacts of SARS-CoV-2 affliction among the students' survivors in the university. Methods: The study design of the experiment was cross-sectional, sampling technique was non probability and sampling method being applied was convenience sampling. IBM Statistical Package for the Social Sciences version 20 was used for analyses. Descriptive data was examined and results were showed as mean and standard deviations, percentages, frequencies for continuous variables of IES-R scale (Intrusion, Avoidance, and Hyperarousal) using the total sample of n = 34. Results: Out of 34 only 24 student survivors responded to the online survey post COVID-19 recovery, with an overall participation level of 71%. Grading was given for the total IES-R score which was subdivided into a predefined range. Out of 24 participants, 9 (38%) participants showed the symptoms of mild (n = 2)-severe (n = 7) psychological impacts. On correlation of factors total IES-R score and taste and sense of smell were moderately correlated. The ordinal regression for complete loss of sense of taste and smell was also significant. Conclusion: The results from IES-R evaluation clearly outlines the presence of psychological sequels post recovery of COVID-19 episodes among the young college survivors. Complete loss of sense of smell and taste may be an indicator of psychological sequelae as compared to reduce sense of smell.


Asunto(s)
COVID-19 , Trastornos por Estrés Postraumático , Ansiedad/psicología , COVID-19/epidemiología , Estudios Transversales , Humanos , Salud Mental , SARS-CoV-2 , Trastornos por Estrés Postraumático/epidemiología , Estudiantes , Sobrevivientes/psicología
18.
PLOS Glob Public Health ; 2(4): e0000372, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962325

RESUMEN

Maternal and Child Health and Nutrition Improvement Project (MCHNP) is an intervention that, adopts financial strategies to provide incentives as a means of motivating community health workers and ensuring accountability. This study highlights on the service delivery component of the intervention; thus, utilization of essential community nutrition and health action. This paper aims to determine the differential impact of MCHNP on maternal health service utilization in Ghana. A retrospective longitudinal pre-test post-test study design was employed. Six administrative regions were used for analyzing the impact of the intervention in uptake of maternal health services. Administrative data were extracted from the DHIMS2 database for the periods of January 2014 to December 2018. Analysis was conducted using interrupted time series analysis (ITSA) due to the absence of a control group. The difference in the pre-intervention and post-intervention means were statistically significant in the Central, Western, Eastern and Upper West region for the proportion of ANC 4 visits. With the exception of Northern region that recorded negative impact (-0.005; p-value >0.05), all the remaining regions recorded positive impacts on the percentage of women that had 4 ANC visits. All six regions had positive impacts in the proportion of women that received supervised delivery. However, none of these impacts were statistically significant; thus, the MCHNP intervention had no significant impact on maternal health outcomes which are, ANC four visits and skilled deliveries.

19.
ACS Omega ; 6(15): 10403-10414, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34056193

RESUMEN

Respiratory syncytial virus (RSV) is a leading viral pathogen causing acute lower respiratory tract infection in children. The G protein of RSV is involved in attachment with the host cell. It is a neutralizing antigen and thus a vaccine candidate. Heparan sulfate is a type of glycosaminoglycan (GAG) present on the host cell membrane that is involved in attachment with the G protein of RSV. We describe a novel approach for efficient expression and purification of the ectodomain G protein in the prokaryotic system and its biophysical characterization. The native ectodomain G protein was purified using a two-step process by Ni-NTA and DEAE weak anion-exchange chromatography through the supernatant obtained after cell lysis. In addition, the denatured form of the protein was also purified from the solubilized inclusion bodies (IBs) by Ni-NTA affinity chromatography with a higher yield. Dynamic light scattering (DLS) was performed to confirm the homogeneity of the purified protein. The effect of pH on the stability and structure of the purified protein was studied by circular dichroism (CD), fluorescence, and absorbance spectroscopy techniques. Isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) were exploited to demonstrate the interaction of heparan sulfate with the ectodomain G protein. The dynamic light scattering results showed that the purified protein was homogenic and had a well-folded native conformation. Biophysical characterization of the protein revealed that it was stable and had intact secondary and tertiary structures at pH 7.5. CD analysis revealed that the protein showed a loss in the secondary structure at pH values 5.5 and 3.5, while absorbance spectroscopy suggested a stable tertiary structure at pH values 7.5 and 5.5 with a probable aggregation pattern at pH 3.5. This loss in the structure of the ectodomain G protein at low pH can be correlated with its physiological activity. A slight change in pH might play a crucial role in host-pathogen interactions. The fluorescence intensity of the protein decreased on moving toward a lower pH with no spectral shift in emission maxima. In addition, isothermal titration calorimetry and microscale thermophoresis results showed strong binding affinity of the ectodomain G protein with heparan sulfate. The binding of heparan sulfate with protein was probably due to the electrostatic interaction of positively charged amino acid residues of the heparin-binding domain of the protein and the negatively charged group of GAGs. Future studies may involve the development of possible therapeutic agents interacting with the G protein and affecting the overall charge and pH that might hinder the host-pathogen interaction.

20.
Front Pediatr ; 9: 652011, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981653

RESUMEN

Background: Alström syndrome (AS) is a very rare childhood disorder characterized by cardiomyopathy, progressive hearing loss and blindness. Inherited genetic variants of ALMS1 gene are the known molecular cause of this disease. The objective of this study was to characterize the genetic basis and understand the genotype-phenotype relationship in Saudi AS patients. Methods: Clinical phenotyping and whole-exome sequencing (WES) analysis were performed on six AS patients belonging to two unrelated consanguineous Saudi families. Sanger sequencing was performed to determine the mode of inheritance of ALMS1 variant in first-degree family relatives and also to ensure its rare prevalence in 100 healthy population controls. Results: We identified that Alström patients from both the families were sharing a very rare ALMS1, 3'-splice site acceptor (c.11873-2 A>T) variant, which skips entire exon-19 and shortens the protein by 80 amino acids. This disease variant was inherited by AS patients in autosomal recessive mode and is not yet reported in any population-specific genetic databases. AS patients carrying this mutation showed heterogeneity in clinical presentations. Computational analysis of the mutant centroid structure of ALMS1 mRNA revealed that exon-19 skipping enlarges the hairpin loop and decreases the free energy, eventually affecting its folding pattern, stability, and function. Hence, we propose c.11873-2A as an AS causative potential founder mutation in Saudi Arabia because it is found in two families lacking a common lineage. Conclusions: We conclude that WES analysis potentially helps in clinical phenotyping, early diagnosis, and better clinical management of Alström patients showing variable clinical expressivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...