Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Arch Comput Methods Eng ; 30(5): 3405-3435, 2023.
Article En | MEDLINE | ID: mdl-37260911

Marine Predators Algorithm (MPA) is a recent nature-inspired optimizer stemmed from widespread foraging mechanisms based on Lévy and Brownian movements in ocean predators. Due to its superb features, such as derivative-free, parameter-less, easy-to-use, flexible, and simplicity, MPA is quickly evolved for a wide range of optimization problems in a short period. Therefore, its impressive characteristics inspire this review to analyze and discuss the primary MPA research studies established. In this review paper, the growth of the MPA is analyzed based on 102 research papers to show its powerful performance. The MPA inspirations and its theoretical concepts are also illustrated, focusing on its convergence behaviour. Thereafter, the MPA versions suggested improving the MPA behaviour on connecting the search space shape of real-world optimization problems are analyzed. A plethora and diverse optimization applications have been addressed, relying on MPA as the main solver, which is also described and organized. In addition, a critical discussion about the convergence behaviour and the main limitation of MPA is given. The review is end-up highlighting the main findings of this survey and suggests some possible MPA-related improvements and extensions that can be carried out in the future.

2.
Cognit Comput ; : 1-38, 2023 Jun 05.
Article En | MEDLINE | ID: mdl-37362196

Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created for FS methods in cognitive computation to boost the performance of the methods. The goal of this paper is to present three adaptive versions of the capuchin search algorithm (CSA) that each features a better search ability than the parent CSA. These versions are used to select optimal feature subset based on a binary version of each adapted one and the k-Nearest Neighbor (k-NN) classifier. These versions were matured by applying several strategies, including automated control of inertia weight, acceleration coefficients, and other computational factors, to ameliorate search potency and convergence speed of CSA. In the velocity model of CSA, some growth computational functions, known as exponential, power, and S-shaped functions, were adopted to evolve three versions of CSA, referred to as exponential CSA (ECSA), power CSA (PCSA), and S-shaped CSA (SCSA), respectively. The results of the proposed FS methods on 24 benchmark datasets with different dimensions from various repositories were compared with other k-NN based FS methods from the literature. The results revealed that the proposed methods significantly outperformed the performance of CSA and other well-established FS methods in several relevant criteria. In particular, among the 24 datasets considered, the proposed binary ECSA, which yielded the best overall results among all other proposed versions, is able to excel the others in 18 datasets in terms of classification accuracy, 13 datasets in terms of specificity, 10 datasets in terms of sensitivity, and 14 datasets in terms of fitness values. Simply put, the results on 15, 9, and 5 datasets out of the 24 datasets studied showed that the performance levels of the binary ECSA, PCSA, and SCSA are over 90% in respect of specificity, sensitivity, and accuracy measures, respectively. The thorough results via different comparisons divulge the efficiency of the proposed methods in widening the classification accuracy compared to other methods, ensuring the ability of the proposed methods in exploring the feature space and selecting the most useful features for classification studies.

3.
Neural Comput Appl ; 35(21): 15923-15941, 2023.
Article En | MEDLINE | ID: mdl-37273914

The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others.

4.
Diagnostics (Basel) ; 13(9)2023 Apr 28.
Article En | MEDLINE | ID: mdl-37174970

Recently, pre-trained deep learning (DL) models have been employed to tackle and enhance the performance on many tasks such as skin cancer detection instead of training models from scratch. However, the existing systems are unable to attain substantial levels of accuracy. Therefore, we propose, in this paper, a robust skin cancer detection framework for to improve the accuracy by extracting and learning relevant image representations using a MobileNetV3 architecture. Thereafter, the extracted features are used as input to a modified Hunger Games Search (HGS) based on Particle Swarm Optimization (PSO) and Dynamic-Opposite Learning (DOLHGS). This modification is used as a novel feature selection to alloacte the most relevant feature to maximize the model's performance. For evaluation of the efficiency of the developed DOLHGS, the ISIC-2016 dataset and the PH2 dataset were employed, including two and three categories, respectively. The proposed model has accuracy 88.19% on the ISIC-2016 dataset and 96.43% on PH2. Based on the experimental results, the proposed approach showed more accurate and efficient performance in skin cancer detection than other well-known and popular algorithms in terms of classification accuracy and optimized features.

5.
Arch Comput Methods Eng ; 30(5): 2831-2858, 2023.
Article En | MEDLINE | ID: mdl-36777699

This paper reviews the latest versions and applications of sparrow search algorithm (SSA). It is a recent swarm-based algorithm proposed in 2020 rapidly grew due to its simple and optimistic features. SSA is inspired by the sparrow living style of foraging and the anti-predation behavior of sparrows. Since its establishment, it has been utilized for a plethora of optimization problems in different research topics, such as mechanical engineering, electrical engineering, civil engineering, power systems, industrial engineering, image processing, networking, environment, robotics, planing and scheduling, and healthcare. Initially, the growth of SSA and its theoretical features are highlighted in terms of the number of published articles, citations, topics covered, etc. After that, the different extended versions of SSA are reviewed, where the main variations of SSA are produced to avoid premature convergence and to boost the diversity aspects. These extended versions are modifications and hybridization summarized with more focus on the motivations behind establishing these versions. Multi-objective SSA is also presented as another version to deal with Multi-objective optimization problems. The critical analysis of the main research gaps in the convergence behaviour of SSA is discussed. Finally, the conclusion and the possible future expansions are recommended based on the research works accomplished in the literature.

6.
Appl Intell (Dordr) ; : 1-43, 2023 Feb 09.
Article En | MEDLINE | ID: mdl-36785593

Software Fault Prediction (SFP) is an important process to detect the faulty components of the software to detect faulty classes or faulty modules early in the software development life cycle. In this paper, a machine learning framework is proposed for SFP. Initially, pre-processing and re-sampling techniques are applied to make the SFP datasets ready to be used by ML techniques. Thereafter seven classifiers are compared, namely K-Nearest Neighbors (KNN), Naive Bayes (NB), Linear Discriminant Analysis (LDA), Linear Regression (LR), Decision Tree (DT), Support Vector Machine (SVM), and Random Forest (RF). The RF classifier outperforms all other classifiers in terms of eliminating irrelevant/redundant features. The performance of RF is improved further using a dimensionality reduction method called binary whale optimization algorithm (BWOA) to eliminate the irrelevant/redundant features. Finally, the performance of BWOA is enhanced by hybridizing the exploration strategies of the grey wolf optimizer (GWO) and harris hawks optimization (HHO) algorithms. The proposed method is called SBEWOA. The SFP datasets utilized are selected from the PROMISE repository using sixteen datasets for software projects with different sizes and complexity. The comparative evaluation against nine well-established feature selection methods proves that the proposed SBEWOA is able to significantly produce competitively superior results for several instances of the evaluated dataset. The algorithms' performance is compared in terms of accuracy, the number of features, and fitness function. This is also proved by the 2-tailed P-values of the Wilcoxon signed ranks statistical test used. In conclusion, the proposed method is an efficient alternative ML method for SFP that can be used for similar problems in the software engineering domain.

7.
Appl Intell (Dordr) ; 53(11): 13224-13260, 2023.
Article En | MEDLINE | ID: mdl-36247211

This paper proposes new improved binary versions of the Sine Cosine Algorithm (SCA) for the Feature Selection (FS) problem. FS is an essential machine learning and data mining task of choosing a subset of highly discriminating features from noisy, irrelevant, high-dimensional, and redundant features to best represent a dataset. SCA is a recent metaheuristic algorithm established to emulate a model based on sine and cosine trigonometric functions. It was initially proposed to tackle problems in the continuous domain. The SCA has been modified to Binary SCA (BSCA) to deal with the binary domain of the FS problem. To improve the performance of BSCA, three accumulative improved variations are proposed (i.e., IBSCA1, IBSCA2, and IBSCA3) where the last version has the best performance. IBSCA1 employs Opposition Based Learning (OBL) to help ensure a diverse population of candidate solutions. IBSCA2 improves IBSCA1 by adding Variable Neighborhood Search (VNS) and Laplace distribution to support several mutation methods. IBSCA3 improves IBSCA2 by optimizing the best candidate solution using Refraction Learning (RL), a novel OBL approach based on light refraction. For performance evaluation, 19 real-wold datasets, including a COVID-19 dataset, were selected with different numbers of features, classes, and instances. Three performance measurements have been used to test the IBSCA versions: classification accuracy, number of features, and fitness values. Furthermore, the performance of the last variation of IBSCA3 is compared against 28 existing popular algorithms. Interestingly, IBCSA3 outperformed almost all comparative methods in terms of classification accuracy and fitness values. At the same time, it was ranked 15 out of 19 in terms of number of features. The overall simulation and statistical results indicate that IBSCA3 performs better than the other algorithms.

9.
Arch Comput Methods Eng ; 30(2): 1399-1420, 2023.
Article En | MEDLINE | ID: mdl-36348702

The butterfly optimization algorithm (BOA) is a recent successful metaheuristic swarm-based optimization algorithm. The BOA has attracted scholars' attention due to its extraordinary features. Such as the few adaptive parameters to handle and the high balance between exploration and exploitation. Accordingly, the BOA has been extensively adapted for various optimization problems in different domains in a short period. Therefore, this paper reviews and summarizes the recently published studies that utilized the BOA for optimization problems. Initially, introductory information about the BOA is presented to illustrate the essential foundation and its relevant optimization concepts. In addition, the BOA inspiration and its mathematical model are provided with an illustrative example to prove its high capabilities. Subsequently, all reviewed studies are classified into three main classes based on the adaptation form, including original, modified, and hybridized. The main BOA applications are also thoroughly explained. Furthermore, the BOA advantages and drawbacks in dealing with optimization problems are analyzed. Finally, the paper is summarized in conclusion with the future directions that can be investigated further.

10.
Adv Med Educ Pract ; 13: 927-937, 2022.
Article En | MEDLINE | ID: mdl-36039185

Purpose: Artificial intelligence (AI) is playing an increasingly important role in healthcare and health professions education. This study explored medical students' and interns' knowledge of artificial intelligence (AI), perceptions of the role of AI in medicine, and preferences around the teaching of AI competencies. Methods: In this cross-sectional study, the authors used a previously validated Canadian questionnaire and gathered responses from students and interns at KIST Medical College, Nepal. Face validity and reliability of the tool were assessed by administering the questionnaire to 20 alumni as a pilot sample (Cronbach alpha = 0.6). Survey results were analyzed quantitatively (p-value = 0.05). Results: In total 216 students (37% response rate) participated. The median AI knowledge score was 11 (interquartile range 4), and the maximum possible score was 25. The score was higher among final year students (p = 0.006) and among those with additional training in AI (p = 0.040). Over 49% strongly agreed or agreed that AI will reduce the number of jobs for doctors. Many expect AI to impact their specialty choice, felt the Nepalese health-care system is ill-equipped to deal with the challenges of AI, and opined every student of medicine should receive training on AI competencies. Conclusion: The lack of coverage of AI and machine learning in Nepalese medical schools has resulted in students being unaware of AI's impact on individual patients and the healthcare system. A high perceived willingness among respondents to learn about AI is a positive sign and a strong indicator of futuristic successful curricula changes. Systematic implementation of AI in the Nepalese healthcare system can be a potential tool in addressing health-care challenges related to resource and manpower constraints. Incorporating topics related to AI and machine learning in medical curricula can be a useful first step.

11.
Neural Comput Appl ; 34(19): 16387-16422, 2022.
Article En | MEDLINE | ID: mdl-35971379

Bat-inspired algorithm (BA) is a robust swarm intelligence algorithm that finds success in many problem domains. The ecosystem of bat animals inspires the main idea of BA. This review paper scanned and analysed the state-of-the-art researches investigated using BA from 2017 to 2021. BA has very impressive characteristics such as its easy-to-use, simple in concepts, flexible and adaptable, consistent, and sound and complete. It has strong operators that incorporate the natural selection principle through survival-of-the-fittest rule within the intensification step attracted by local-best solution. Initially, the growth of the recent solid works published in Scopus indexed articles is summarized in terms of the number of BA-based Journal articles published per year, citations, top authors, work with BA, top institutions, and top countries. After that, the different versions of BA are highlighted to be in line with the complex nature of optimization problems such as binary, modified, hybridized, and multiobjective BA. The successful applications of BA are reviewed and summarized, such as electrical and power system, wireless and network system, environment and materials engineering, classification and clustering, structural and mechanical engineering, feature selection, image and signal processing, robotics, medical and healthcare, scheduling domain, and many others. The critical analysis of the limitations and shortcomings of BA is also mentioned. The open-source codes of BA code are given to build a wealthy BA review. Finally, the BA review is concluded, and the possible future directions for upcoming developments are suggested such as utilizing BA to serve in dynamic, robust, multiobjective, large-scaled optimization as well as improve BA performance by utilizing structure population, tuning parameters, memetic strategy, and selection mechanisms. The reader of this review will determine the best domains and applications used by BA and can justify their BA-related contributions.

12.
Comput Biol Med ; 147: 105675, 2022 08.
Article En | MEDLINE | ID: mdl-35687926

In this paper, an enhanced binary version of the Rat Swarm Optimizer (RSO) is proposed to deal with Feature Selection (FS) problems. FS is an important data reduction step in data mining which finds the most representative features from the entire data. Many FS-based swarm intelligence algorithms have been used to tackle FS. However, the door is still open for further investigations since no FS method gives cutting-edge results for all cases. In this paper, a recent swarm intelligence metaheuristic method called RSO which is inspired by the social and hunting behavior of a group of rats is enhanced and explored for FS problems. The binary enhanced RSO is built based on three successive modifications: i) an S-shape transfer function is used to develop binary RSO algorithms; ii) the local search paradigm of particle swarm optimization is used with the iterative loop of RSO to boost its local exploitation; iii) three crossover mechanisms are used and controlled by a switch probability to improve the diversity. Based on these enhancements, three versions of RSO are produced, referred to as Binary RSO (BRSO), Binary Enhanced RSO (BERSO), and Binary Enhanced RSO with Crossover operators (BERSOC). To assess the performance of these versions, a benchmark of 24 datasets from various domains is used. The proposed methods are assessed concerning the fitness value, number of selected features, classification accuracy, specificity, sensitivity, and computational time. The best performance is achieved by BERSOC followed by BERSO and then BRSO. These proposed versions are comparatively assessed against 25 well-regarded metaheuristic methods and five filter-based approaches. The obtained results underline their superiority by producing new best results for some datasets.


Algorithms , Data Mining , Animals , Benchmarking , Rats
13.
Sensors (Basel) ; 22(6)2022 Mar 08.
Article En | MEDLINE | ID: mdl-35336263

The electroencephalogram (EEG) introduced a massive potential for user identification. Several studies have shown that EEG provides unique features in addition to typical strength for spoofing attacks. EEG provides a graphic recording of the brain's electrical activity that electrodes can capture on the scalp at different places. However, selecting which electrodes should be used is a challenging task. Such a subject is formulated as an electrode selection task that is tackled by optimization methods. In this work, a new approach to select the most representative electrodes is introduced. The proposed algorithm is a hybrid version of the Flower Pollination Algorithm and ß-Hill Climbing optimizer called FPAß-hc. The performance of the FPAß-hc algorithm is evaluated using a standard EEG motor imagery dataset. The experimental results show that the FPAß-hc can utilize less than half of the electrode numbers, achieving more accurate results than seven other methods.


Imagination , Pollination , Algorithms , Electroencephalography/methods , Flowers
14.
J Ambient Intell Humaniz Comput ; : 1-29, 2022 Feb 07.
Article En | MEDLINE | ID: mdl-35154502

In this paper, the economic load dispatch (ELD) problem which is an important problem in electrical engineering is tackled using a hybrid sine cosine algorithm (SCA) in a form of memetic technique. ELD is tackled by assigning a set of generation units with a minimum fuel costs to generate predefined load demand with accordance to a set of equality and inequality constraints. SCA is a recent population based optimizer turned towards the optimal solution using a mathematical-based model based on sine and cosine trigonometric functions. As other optimization methods, SCA has main shortcoming in exploitation process when a non-linear constraints problem like ELD is tackled. Therefore, ß -hill climbing optimizer, a recent local search algorithm, is hybridized as a new operator in SCA to empower its exploitation capability to tackle ELD. The proposed hybrid algorithm is abbreviated as SCA- ß HC which is evaluated using two sets of real-world generation cases: (i) 3-units, two versions of 13-units, and 40-units, with neglected Ramp Rate Limits and Prohibited Operating Zones constraints. (ii) 6-units and 15-units with Ramp Rate Limits and Prohibited Operating Zones constraints. The sensitivity analysis of the control parameters for SCA- ß HC is initially studied. The results show that the performance of the SCA- ß HC algorithm is increased by tuning its parameters in proper value. The comparative evaluation against several state-of-the-art methods show that the proposed method is able to produce new best results for some tested cases as well as the second-best for others. In a nutshell, hybridizing ß HC optimizer as a new operator for SCA is very powerful algorithm for tackling ELD problems.

15.
Comput Intell Neurosci ; 2022: 5974634, 2022.
Article En | MEDLINE | ID: mdl-35069721

Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies defined the EEG with unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks. The EEG signals are a visual recording of the brain's electrical activities, measured by placing electrodes (channels) in various scalp positions. However, traditional EEG-based systems lead to high complexity with many channels, and some channels have critical information for the identification system while others do not. Several studies have proposed a single objective to address the EEG channel for person identification. Unfortunately, these studies only focused on increasing the accuracy rate without balancing the accuracy and the total number of selected EEG channels. The novelty of this paper is to propose a multiobjective binary version of the cuckoo search algorithm (MOBCS-KNN) to find optimal EEG channel selections for person identification. The proposed method (MOBCS-KNN) used a weighted sum technique to implement a multiobjective approach. In addition, a KNN classifier for EEG-based biometric person identification is used. It is worth mentioning that this is the initial investigation of using a multiobjective technique with EEG channel selection problem. A standard EEG motor imagery dataset is used to evaluate the performance of the MOBCS-KNN. The experiments show that the MOBCS-KNN obtained accuracy of 93.86% using only 24 sensors with AR20 autoregressive coefficients. Another critical point is that the MOBCS-KNN finds channels not too close to each other to capture relevant information from all over the head. In conclusion, the MOBCS-KNN algorithm achieves the best results compared with metaheuristic algorithms. Finally, the recommended approach can draw future directions to be applied to different research areas.


Brain-Computer Interfaces , Electroencephalography , Algorithms , Delivery of Health Care , Electrodes , Humans
16.
Arch Comput Methods Eng ; 29(2): 763-792, 2022.
Article En | MEDLINE | ID: mdl-34075292

In this review paper, JAYA algorithm, which is a recent population-based algorithm is intensively overviewed. The JAYA algorithm combines the survival of the fittest principle from evolutionary algorithms as well as the global optimal solution attractions of Swarm Intelligence methods. Initially, the optimization model and convergence characteristics of JAYA algorithm are carefully analyzed. Thereafter, the proposed versions of JAYA algorithm have been surveyed such as modified, binary, hybridized, parallel, chaotic, multi-objective and others. The various applications tackled using relevant versions of JAYA algorithm are also discussed and summarized based on several problem domains. Furthermore, the open sources code of JAYA algorithm are identified to provide enrich resources for JAYA research communities. The critical analysis of JAYA algorithm reveals its advantages and limitations in dealing with optimization problems. Finally, the paper ends up with conclusion and possible future enhancements suggested to improve the performance of JAYA algorithm. The reader of this overview will determine the best domains and applications used by JAYA algorithm and can justify their JAYA-related contributions.

17.
Comput Intell Neurosci ; 2022: 6473507, 2022.
Article En | MEDLINE | ID: mdl-37332528

This study proposes a novel framework to improve intrusion detection system (IDS) performance based on the data collected from the Internet of things (IoT) environments. The developed framework relies on deep learning and metaheuristic (MH) optimization algorithms to perform feature extraction and selection. A simple yet effective convolutional neural network (CNN) is implemented as the core feature extractor of the framework to learn better and more relevant representations of the input data in a lower-dimensional space. A new feature selection mechanism is proposed based on a recently developed MH method, called Reptile Search Algorithm (RSA), which is inspired by the hunting behaviors of the crocodiles. The RSA boosts the IDS system performance by selecting only the most important features (an optimal subset of features) from the extracted features using the CNN model. Several datasets, including KDDCup-99, NSL-KDD, CICIDS-2017, and BoT-IoT, were used to assess the IDS system performance. The proposed framework achieved competitive performance in classification metrics compared to other well-known optimization methods applied for feature selection problems.


Deep Learning , Internet of Things , Animals , Reptiles , Algorithms , Neural Networks, Computer
18.
J King Saud Univ Comput Inf Sci ; 34(8): 4782-4795, 2022 Sep.
Article En | MEDLINE | ID: mdl-37520767

Capacitated Vehicle routing problem is NP-hard scheduling problem in which the main concern is to find the best routes with minimum cost for a number of vehicles serving a number of scattered customers under some vehicle capacity constraint. Due to the complex nature of the capacitated vehicle routing problem, metaheuristic optimization algorithms are widely used for tackling this type of challenge. Coronavirus Herd Immunity Optimizer (CHIO) is a recent metaheuristic population-based algorithm that mimics the COVID-19 herd immunity treatment strategy. In this paper, CHIO is modified for capacitated vehicle routing problem. The modifications for CHIO are accomplished by modifying its operators to preserve the solution feasibility for this type of vehicle routing problems. To evaluate the modified CHIO, two sets of data sets are used: the first data set has ten Synthetic CVRP models while the second is an ABEFMP data set which has 27 instances with different models. Moreover, the results achieved by modified CHIO are compared against the results of other 13 well-regarded algorithms. For the first data set, the modified CHIO is able to gain the same results as the other comparative methods in two out of ten instances and acceptable results in the rest. For the second and the more complicated data sets, the modified CHIO is able to achieve very competitive results and ranked the first for 8 instances out of 27. In a nutshell, the modified CHIO is able to efficiently solve the capacitated vehicle routing problem and can be utilized for other routing problems in the future such as multiple travelling salesman problem.

19.
Expert Syst ; 39(3): e12759, 2022 Mar.
Article En | MEDLINE | ID: mdl-34511689

COVID-19 is the disease evoked by a new breed of coronavirus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, COVID-19 has become a pandemic by infecting more than 152 million people in over 216 countries and territories. The exponential increase in the number of infections has rendered traditional diagnosis techniques inefficient. Therefore, many researchers have developed several intelligent techniques, such as deep learning (DL) and machine learning (ML), which can assist the healthcare sector in providing quick and precise COVID-19 diagnosis. Therefore, this paper provides a comprehensive review of the most recent DL and ML techniques for COVID-19 diagnosis. The studies are published from December 2019 until April 2021. In general, this paper includes more than 200 studies that have been carefully selected from several publishers, such as IEEE, Springer and Elsevier. We classify the research tracks into two categories: DL and ML and present COVID-19 public datasets established and extracted from different countries. The measures used to evaluate diagnosis methods are comparatively analysed and proper discussion is provided. In conclusion, for COVID-19 diagnosing and outbreak prediction, SVM is the most widely used machine learning mechanism, and CNN is the most widely used deep learning mechanism. Accuracy, sensitivity, and specificity are the most widely used measurements in previous studies. Finally, this review paper will guide the research community on the upcoming development of machine learning for COVID-19 and inspire their works for future development. This review paper will guide the research community on the upcoming development of ML and DL for COVID-19 and inspire their works for future development.

20.
Knowl Based Syst ; 235: 107629, 2022 Jan 10.
Article En | MEDLINE | ID: mdl-34728909

The importance of medical data and the crucial nature of the decisions that are based on such data, as well as the large increase in its volume, has encouraged researchers to develop feature selection (FS)-based approaches to identify the most relevant data for specific medical problems In this paper, two intelligent wrapper FS approaches based on a new metaheuristic algorithm named the coronavirus herd immunity optimizer (CHIO) were applied with and without the incorporation of a greedy crossover (GC) operator strategy to enhance exploration of the search space by CHIO. The two proposed approaches, CHIO and CHIO-GC, were evaluated using 23 medical benchmark datasets and a real-world COVID-19 dataset. The experimental results indicated that CHIO-GC outperformed CHIO in terms of search capability, as reflected in classification accuracy, selection size, F-measure, standard deviation and convergence speed. The GC operator was able to enhance the balance between exploration and exploitation of the CHIO in the search and correct suboptimal solutions for faster convergence. The proposed CHIO-GC was also compared with two previous wrapper FS approaches, namely, binary moth flame optimization with Lévy flight (LBMFO_V3) and the hyper learning binary dragonfly algorithm (HLBDA), as well as four filter methods namely, Chi-square, Relief, correlation-based feature selection and information gain. CHIO-GC surpassed LBMFO_V3 and the four filter methods with an accuracy rate of 0.79 on 23 medical benchmark datasets. CHIO-GC also surpassed HLBDA with an accuracy rate of 0.93 when applied to the COVID-19 dataset. These encouraging results were obtained by striking a sufficient balance between the two search phases of CHIO-GC during the hunt for correct solutions, which also increased the convergence rate. This was accomplished by integrating a greedy crossover technique into the CHIO algorithm to remedy the inferior solutions found during premature convergence and while locked into a local optimum search space.

...