Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
3.
J Perinatol ; 43(Suppl 1): 40-44, 2023 12.
Article En | MEDLINE | ID: mdl-38086966

Design charettes have been utilized in architectural and design practice to generate innovative ideas. The Reimagining Workshop is a version that combines practical and blue-sky thinking to improve healthcare facility design. The workshop engages diverse stakeholders who follow a human-centered design framework. The Reimagining the Neonatal Intensive Care Unit workshop sought to generate ideas for the future, optimal NICU without specific site or client constraints. Key themes include family-centered care, technology-enabled care, neighborhood and village design and investing in the care team. Recommendations include a supportive physical environment, celebrating milestones, complementary and alternative medicine, enhancing the transition of care, aiding the transition period, and leveraging technology. The workshop showcased the potential for transformative change in NICU design and provided a roadmap for future advancements. These findings can inform regulatory standards for NICU design and drive improvements in family-centered care, patient experiences, and outcomes within the NICU environment.


Intensive Care Units, Neonatal , Patient-Centered Care , Infant, Newborn , Humans , Professional-Family Relations , Delivery of Health Care , Parents
4.
Article En | MEDLINE | ID: mdl-38023799

Background: This study measured fluoride release from a light-cured orthodontic adhesive resin (Vega type) at three time intervals (one day, one week, and one month), investigated the rechargeability of the resin, and assessed its impact on shear bond strength in demineralized tooth surfaces. Methods: This study used 30 recently extracted upper premolar teeth to explore the effects of fluoride release over specific time intervals. The teeth underwent demineralization and were categorized into groups based on time intervals: one day, one week, and one month. Subgroups within each interval underwent fluoride recharging through fluoride varnish application. Fluoride release and shear bond strength were assessed after etching with phosphoric acid gel, applying the orthodontic adhesive, and curing. The samples were stored in deionized water. Fluoride quantification used a selective electrode, while shear bond strength assessment employed a universal testing machine. Finally, statistical analysis of the data was performed using SPSS 22. Results: The study found that after one month, the adhesive had the highest fluoride release and shear bond strength mean values. There were significant differences in fluoride release and shear bond strength between the various groups studied. Conclusion: The application of fluoride varnish around the orthodontic bracket resulted in a positive effect on the shear bond strength of the bracket.

5.
Environ Monit Assess ; 195(9): 1078, 2023 Aug 24.
Article En | MEDLINE | ID: mdl-37615739

The 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of adsorption were affecting the adsorption process significantly. Thermodynamic data stated that the process of adsorption was endothermic, spontaneous, chemisorption and the molecules of EE2 show affinity with the CRH. It was discovered that the adsorption process controlled by a pseudo-second-order kinetic model demonstrates that the chemisorption process was controlling EE2 removal. The Sips model is regarded as optimal for representing this practice, exhibiting a significantly high determination coefficient of 0.948. This coefficient implies that the adsorption mechanism indicates the occurrence of both heterogeneous and homogeneous adsorption. According to the findings, biomass can serve as a cheap, operative sorbent to remove estrogen from liquified solutions.


Nanoparticles , Oryza , Copper , Adsorption , Kinetics , Environmental Monitoring , Ethinyl Estradiol , Oxides
6.
Stud Health Technol Inform ; 290: 577-581, 2022 Jun 06.
Article En | MEDLINE | ID: mdl-35673082

The space of clinical planning requires a complex arrangement of information, often not capable of being captured in a singular dataset. As a result, data fusion techniques can be used to combine multiple data sources as a method of enriching data to mimic and compliment the nature of clinical planning. These techniques are capable of aiding healthcare providers to produce higher quality clinical plans and better progression monitoring techniques. Clinical planning and monitoring are important facets of healthcare which are essential to improving the prognosis and quality of life of patients with chronic and debilitating conditions such as COPD. To exemplify this concept, we utilize a Node-Red-based clinical planning and monitoring tool that combines data fusion techniques using the JDL Model for data fusion and a domain specific language which features a self-organizing abstract syntax tree.


Health Personnel , Quality of Life , Humans , Research Design , Workflow
7.
Comput Methods Programs Biomed ; 197: 105724, 2020 Dec.
Article En | MEDLINE | ID: mdl-32877817

BACKGROUND AND OBJECTIVE: Bayesian network is a probabilistic model of which the prediction accuracy may not be one of the highest in the machine learning family. Deep learning (DL) on the other hand possess of higher predictive power than many other models. How reliable the result is, how it is deduced, how interpretable the prediction by DL mean to users, remain obscure. DL functions like a black box. As a result, many medical practitioners are reductant to use deep learning as the only tool for critical machine learning application, such as aiding tool for cancer diagnosis. METHODS: In this paper, a framework of white learning is being proposed which takes advantages of both black box learning and white box learning. Usually, black box learning will give a high standard of accuracy and white box learning will provide an explainable direct acyclic graph. According to our design, there are 3 stages of White Learning, loosely coupled WL, semi coupled WL and tightly coupled WL based on degree of fusion of the white box learning and black box learning. In our design, a case of loosely coupled WL is tested on breast cancer dataset. This approach uses deep learning and an incremental version of Naïve Bayes network. White learning is largely defied as a systemic fusion of machine learning models which result in an explainable Bayes network which could find out the hidden relations between features and class and deep learning which would give a higher accuracy of prediction than other algorithms. We designed a series of experiments for this loosely coupled WL model. RESULTS: The simulation results show that using WL compared to standard black-box deep learning, the levels of accuracy and kappa statistics could be enhanced up to 50%. The performance of WL seems more stable too in extreme conditions such as noise and high dimensional data. The relations by Bayesian network of WL are more concise and stronger in affinity too. CONCLUSION: The experiments results deliver positive signals that WL is possible to output both high classification accuracy and explainable relations graph between features and class.


Breast Neoplasms , Machine Learning , Algorithms , Bayes Theorem , Humans
8.
Bioinformatics ; 35(15): 2665-2667, 2019 08 01.
Article En | MEDLINE | ID: mdl-30561651

SUMMARY: The Pathogen-Host Analysis Tool (PHAT) is an application for processing and analyzing next-generation sequencing (NGS) data as it relates to relationships between pathogens and their hosts. Unlike custom scripts and tedious pipeline programming, PHAT provides an integrative platform encompassing raw and aligned sequence and reference file input, quality control (QC) reporting, alignment and variant calling, linear and circular alignment viewing, and graphical and tabular output. This novel tool aims to be user-friendly for life scientists studying diverse pathogen-host relationships. AVAILABILITY AND IMPLEMENTATION: The project is available on GitHub (https://github.com/chgibb/PHAT) and includes convenient installers, as well as portable and source versions, for both Windows and Linux (Debian and RedHat). Up-to-date documentation for PHAT, including user guides and development notes, can be found at https://chgibb.github.io/PHATDocs/. We encourage users and developers to provide feedback (error reporting, suggestions and comments).


High-Throughput Nucleotide Sequencing , Software , Quality Control
9.
PLoS One ; 12(7): e0180830, 2017.
Article En | MEDLINE | ID: mdl-28753613

Clinical data analysis and forecasting have made substantial contributions to disease control, prevention and detection. However, such data usually suffer from highly imbalanced samples in class distributions. In this paper, we aim to formulate effective methods to rebalance binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat algorithm, and apply them to empower the effects of synthetic minority over-sampling technique (SMOTE) for pre-processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reported in this paper reveal that the performance improvements obtained by the former methods are not scalable to larger data scales. The latter methods, which we call Adaptive Swarm Balancing Algorithms, lead to significant efficiency and effectiveness improvements on large datasets while the first method is invalid. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. The proposed methods lead to more credible performances of the classifier, and shortening the run time compared to brute-force method.


Algorithms , Delivery of Health Care
10.
Sci Rep ; 7: 43167, 2017 02 23.
Article En | MEDLINE | ID: mdl-28230161

Outlier detection in bioinformatics data streaming mining has received significant attention by research communities in recent years. The problems of how to distinguish noise from an exception and deciding whether to discard it or to devise an extra decision path for accommodating it are causing dilemma. In this paper, we propose a novel algorithm called ODR with incrementally Optimized Very Fast Decision Tree (ODR-ioVFDT) for taking care of outliers in the progress of continuous data learning. By using an adaptive interquartile-range based identification method, a tolerance threshold is set. It is then used to judge if a data of exceptional value should be included for training or otherwise. This is different from the traditional outlier detection/removal approaches which are two separate steps in processing through the data. The proposed algorithm is tested using datasets of five bioinformatics scenarios and comparing the performance of our model and other ones without ODR. The results show that ODR-ioVFDT has better performance in classification accuracy, kappa statistics, and time consumption. The ODR-ioVFDT applied onto bioinformatics streaming data processing for detecting and quantifying the information of life phenomena, states, characters, variables and components of the organism can help to diagnose and treat disease more effectively.


Computational Biology/methods , Data Mining/methods , Algorithms , Decision Making, Computer-Assisted
11.
Article En | MEDLINE | ID: mdl-27717712

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

12.
Article En | MEDLINE | ID: mdl-27666793

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

13.
Article En | MEDLINE | ID: mdl-27236411

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

15.
Biomed Res Int ; 2013: 274193, 2013.
Article En | MEDLINE | ID: mdl-24163813

Earlier on, a conceptual design on the real-time clinical decision support system (rt-CDSS) with data stream mining was proposed and published. The new system is introduced that can analyze medical data streams and can make real-time prediction. This system is based on a stream mining algorithm called VFDT. The VFDT is extended with the capability of using pointers to allow the decision tree to remember the mapping relationship between leaf nodes and the history records. In this paper, which is a sequel to the rt-CDSS design, several popular machine learning algorithms are investigated for their suitability to be a candidate in the implementation of classifier at the rt-CDSS. A classifier essentially needs to accurately map the events inputted to the system into one of the several predefined classes of assessments, such that the rt-CDSS can follow up with the prescribed remedies being recommended to the clinicians. For a real-time system like rt-CDSS, the major technological challenges lie in the capability of the classifier to process, analyze and classify the dynamic input data, quickly and upmost reliably. An experimental comparison is conducted. This paper contributes to the insight of choosing and embedding a stream mining classifier into rt-CDSS with a case study of diabetes therapy.


Algorithms , Blood Glucose/analysis , Computer Systems , Decision Support Systems, Clinical , Diabetes Mellitus/blood , Diabetes Mellitus/therapy , Area Under Curve , Bayes Theorem , Humans , ROC Curve
18.
J Biomed Biotechnol ; 2012: 580186, 2012.
Article En | MEDLINE | ID: mdl-22851884

This research aims to describe a new design of data stream mining system that can analyze medical data stream and make real-time prediction. The motivation of the research is due to a growing concern of combining software technology and medical functions for the development of software application that can be used in medical field of chronic disease prognosis and diagnosis, children healthcare, diabetes diagnosis, and so forth. Most of the existing software technologies are case-based data mining systems. They only can analyze finite and structured data set and can only work well in their early years and can hardly meet today's medical requirement. In this paper, we describe a clinical-support-system based data stream mining technology; the design has taken into account all the shortcomings of the existing clinical support systems.


Computer Systems , Data Mining/methods , Decision Support Systems, Clinical , Child , Feedback , Humans , Logic
...