Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Circ Res ; 132(6): 690-703, 2023 03 17.
Article En | MEDLINE | ID: mdl-36779349

BACKGROUND: Impaired beta-adrenergic receptor (ß1 and ß2AR) function following hypoxia underlies ischemic heart failure/stroke. Activation of PI3Kγ (phosphoinositide 3-kinase γ) by beta-adrenergic receptor leads to feedback regulation of the receptor by hindering beta-adrenergic receptor dephosphorylation through inhibition of PP2A (protein phosphatase 2A). However, little is known about PI3Kγ feedback mechanism in regulating hypoxia-mediated ß1 and ß2AR dysfunction and cardiac remodeling. METHODS: Human embryonic kidney 293 cells or mouse adult cardiomyocytes and C57BL/6 (WT) or PI3Kγ knockout (KO) mice were subjected to hypoxia. Cardiac plasma membranes and endosomes were isolated and evaluated for ß1 and ß2AR density and function, PI3Kγ activity and ß1 and ß2AR-associated PP2A activity. Metabolic labeling was performed to assess ß1 and ß2AR phosphorylation and epinephrine/norepinephrine levels measured post-hypoxia. RESULTS: Hypoxia increased ß1 and ß2AR phosphorylation, reduced cAMP, and led to endosomal accumulation of phosphorylated ß2ARs in human embryonic kidney 293 cells and WT cardiomyocytes. Acute hypoxia in WT mice resulted in cardiac remodeling and loss of adenylyl cyclase activity associated with increased ß1 and ß2AR phosphorylation. This was agonist-independent as plasma and cardiac epinephrine and norepinephrine levels were unaltered. Unexpectedly, PI3Kγ activity was selectively increased in the endosomes of human embryonic kidney 293 cells and WT hearts post-hypoxia. Endosomal ß1- and ß2AR-associated PP2A activity was inhibited upon hypoxia in human embryonic kidney 293 cells and WT hearts showing regulation of beta-adrenergic receptors by PI3Kγ. This was accompanied with phosphorylation of endogenous inhibitor of protein phosphatase 2A whose phosphorylation by PI3Kγ inhibits PP2A. Increased ß1 and ß2AR-associated PP2A activity, decreased beta-adrenergic receptor phosphorylation, and normalized cardiac function was observed in PI3Kγ KO mice despite hypoxia. Compared to WT, PI3Kγ KO mice had preserved cardiac response to challenge with ß1AR-selective agonist dobutamine post-hypoxia. CONCLUSIONS: Agonist-independent activation of PI3Kγ underlies hypoxia sensing as its ablation leads to reduction in ß1- and ß2AR phosphorylation and amelioration of cardiac dysfunction.


Phosphatidylinositol 3-Kinases , Receptors, Adrenergic, beta , Animals , Humans , Mice , Endosomes/metabolism , Epinephrine , Hypoxia/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , Norepinephrine/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Phosphatase 2/metabolism , Receptors, Adrenergic, beta/metabolism , Receptors, Adrenergic, beta-2/genetics , Receptors, Adrenergic, beta-2/metabolism , Ventricular Remodeling
2.
Circ Heart Fail ; 16(1): e009972, 2023 01.
Article En | MEDLINE | ID: mdl-36524472

BACKGROUND: The gut microbiota-dependent metabolite phenylacetylgutamine (PAGln) is both associated with atherothrombotic heart disease in humans, and mechanistically linked to cardiovascular disease pathogenesis in animal models via modulation of adrenergic receptor signaling. METHODS: Here we examined both clinical and mechanistic relationships between PAGln and heart failure (HF). First, we examined associations among plasma levels of PAGln and HF, left ventricular ejection fraction, and N-terminal pro-B-type natriuretic peptide in 2 independent clinical cohorts of subjects undergoing coronary angiography in tertiary referral centers (an initial discovery US Cohort, n=3256; and a validation European Cohort, n=829). Then, the impact of PAGln on cardiovascular phenotypes relevant to HF in cultured cardiomyoblasts, and in vivo were also examined. RESULTS: Circulating PAGln levels were dose-dependently associated with HF presence and indices of severity (reduced ventricular ejection fraction, elevated N-terminal pro-B-type natriuretic peptide) independent of traditional risk factors and renal function in both cohorts. Beyond these clinical associations, mechanistic studies showed both PAGln and its murine counterpart, phenylacetylglycine, directly fostered HF-relevant phenotypes, including decreased cardiomyocyte sarcomere contraction, and B-type natriuretic peptide gene expression in both cultured cardiomyoblasts and murine atrial tissue. CONCLUSIONS: The present study reveals the gut microbial metabolite PAGln is clinically and mechanistically linked to HF presence and severity. Modulating the gut microbiome, in general, and PAGln production, in particular, may represent a potential therapeutic target for modulating HF. REGISTRATION: URL: https://clinicaltrials.gov/; Unique identifier: NCT00590200 and URL: https://drks.de/drks_web/; Unique identifier: DRKS00020915.


Gastrointestinal Microbiome , Heart Failure , Ventricular Dysfunction, Left , Animals , Humans , Mice , Natriuretic Peptide, Brain , Stroke Volume/physiology , Ventricular Function, Left
3.
Sci Rep ; 11(1): 22018, 2021 11 10.
Article En | MEDLINE | ID: mdl-34759299

Although microRNA-7 (miRNA-7) is known to regulate proliferation of cancer cells by targeting Epidermal growth factor receptor (EGFR/ERBB) family, less is known about its role in cardiac physiology. Transgenic (Tg) mouse with cardiomyocyte-specific overexpression of miRNA-7 was generated to determine its role in cardiac physiology and pathology. Echocardiography on the miRNA-7 Tg mice showed cardiac dilation instead of age-associated physiological cardiac hypertrophy observed in non-Tg control mice. Subjecting miRNA-7 Tg mice to transverse aortic constriction (TAC) resulted in cardiac dilation associated with increased fibrosis bypassing the adaptive cardiac hypertrophic response to TAC. miRNA-7 expression in cardiomyocytes resulted in significant loss of ERBB2 expression with no changes in ERBB1 (EGFR). Cardiac proteomics in the miRNA-7 Tg mice showed significant reduction in mitochondrial membrane structural proteins compared to NTg reflecting role of miRNA-7 beyond the regulation of EGFR/ERRB in mediating cardiac dilation. Consistently, electron microscopy showed that miRNA-7 Tg hearts had disorganized rounded mitochondria that was associated with mitochondrial dysfunction. These findings show that expression of miRNA-7 in the cardiomyocytes results in cardiac dilation instead of adaptive hypertrophic response during aging or to TAC providing insights on yet to be understood role of miRNA-7 in cardiac function.


Cardiomegaly/diagnostic imaging , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Ventricular Remodeling , Animals , Aorta, Thoracic/surgery , Echocardiography , ErbB Receptors/metabolism , Ligation/methods , Membrane Proteins/metabolism , Mice, Transgenic , MicroRNAs/genetics , Mitochondrial Membranes/metabolism , Receptor, ErbB-2/metabolism
4.
Mol Biol Cell ; 32(7): 622-633, 2021 04 01.
Article En | MEDLINE | ID: mdl-33534612

Dysregulation of immune responses has been linked to the generation of immunoglobulin G (IgG) autoantibodies that target human ß1ARs and contribute to deleterious cardiac outcomes. Given the benefits of ß-blockers observed in patients harboring the IgG3 subclass of autoantibodies, we investigated the role of these autoantibodies in human ß1AR function. Serum and purified IgG3(+) autoantibodies from patients with onset of cardiomyopathy were tested using human embryonic kidney (HEK) 293 cells expressing human ß1ARs. Unexpectedly, pretreatment of cells with IgG3(+) serum or purified IgG3(+) autoantibodies impaired dobutamine-mediated adenylate cyclase (AC) activity and cyclic adenosine monophosphate (cAMP) generation while enhancing biased ß-arrestin recruitment and Extracellular Regulated Kinase (ERK) activation. In contrast, the ß-blocker metoprolol increased AC activity and cAMP in the presence of IgG3(+) serum or IgG3(+) autoantibodies. Because IgG3(+) autoantibodies are specific to human ß1ARs, non-failing human hearts were used as an endogenous system to determine their ability to bias ß1AR signaling. Consistently, metoprolol increased AC activity, reflecting the ability of the IgG3(+) autoantibodies to bias ß-blocker toward G-protein coupling. Importantly, IgG3(+) autoantibodies are specific toward ß1AR as they did not alter ß2AR signaling. Thus, IgG3(+) autoantibody biases ß-blocker toward G-protein coupling while impairing agonist-mediated G-protein activation but promoting G-protein-independent ERK activation. This phenomenon may underlie the beneficial outcomes observed in patients harboring IgG3(+) ß1AR autoantibodies.


Autoantibodies/immunology , Immunoglobulin G/immunology , Receptors, Adrenergic, beta-1/immunology , Autoantibodies/blood , Cardiomyopathies/immunology , Cardiomyopathies/physiopathology , Cyclic AMP , HEK293 Cells , Heart/physiology , Humans , Immunoglobulin G/metabolism , Receptors, Adrenergic/immunology , Receptors, Adrenergic, beta-1/metabolism , Signal Transduction , beta-Arrestins
5.
Hepatology ; 73(5): 1892-1908, 2021 05.
Article En | MEDLINE | ID: mdl-32799332

BACKGROUND AND AIMS: Despite the high clinical significance of sarcopenia in alcohol-associated cirrhosis, there are currently no effective therapies because the underlying mechanisms are poorly understood. We determined the mechanisms of ethanol-induced impaired phosphorylation of mechanistic target of rapamycin complex 1 (mTORC1) and adenosine monophosphate-activated protein kinase (AMPK) with consequent dysregulated skeletal muscle protein homeostasis (balance between protein synthesis and breakdown). APPROACH AND RESULTS: Differentiated murine myotubes, gastrocnemius muscle from mice with loss and gain of function of regulatory genes following ethanol treatment, and skeletal muscle from patients with alcohol-associated cirrhosis were used. Ethanol increases skeletal muscle autophagy by dephosphorylating mTORC1, circumventing the classical kinase regulation by protein kinase B (Akt). Concurrently and paradoxically, ethanol exposure results in dephosphorylation and inhibition of AMPK, an activator of autophagy and inhibitor of mTORC1 signaling. However, AMPK remains inactive with ethanol exposure despite lower cellular and tissue adenosine triphosphate, indicating a "pseudofed" state. We identified protein phosphatase (PP) 2A as a key mediator of ethanol-induced signaling and functional perturbations using loss and gain of function studies. Ethanol impairs binding of endogenous inhibitor of PP2A to PP2A, resulting in methylation and targeting of PP2A to cause dephosphorylation of mTORC1 and AMPK. Activity of phosphoinositide 3-kinase-γ (PI3Kγ), a negative regulator of PP2A, was decreased in response to ethanol. Ethanol-induced molecular and phenotypic perturbations in wild-type mice were observed in PI3Kγ-/- mice even at baseline. Importantly, overexpressing kinase-active PI3Kγ but not the kinase-dead mutant reversed ethanol-induced molecular perturbations. CONCLUSIONS: Our study describes the mechanistic underpinnings for ethanol-mediated dysregulation of protein homeostasis by PP2A that leads to sarcopenia with a potential for therapeutic approaches by targeting the PI3Kγ-PP2A axis.


AMP-Activated Protein Kinase Kinases/metabolism , Liver Diseases, Alcoholic/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Phosphatase 2/metabolism , Sarcopenia/etiology , Animals , Female , Homeostasis , Humans , Immunoprecipitation , Liver Diseases, Alcoholic/complications , Liver Diseases, Alcoholic/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myoblasts/metabolism , Sarcopenia/metabolism , Sarcopenia/pathology
6.
Cell ; 180(5): 862-877.e22, 2020 03 05.
Article En | MEDLINE | ID: mdl-32142679

Using untargeted metabolomics (n = 1,162 subjects), the plasma metabolite (m/z = 265.1188) phenylacetylglutamine (PAGln) was discovered and then shown in an independent cohort (n = 4,000 subjects) to be associated with cardiovascular disease (CVD) and incident major adverse cardiovascular events (myocardial infarction, stroke, or death). A gut microbiota-derived metabolite, PAGln, was shown to enhance platelet activation-related phenotypes and thrombosis potential in whole blood, isolated platelets, and animal models of arterial injury. Functional and genetic engineering studies with human commensals, coupled with microbial colonization of germ-free mice, showed the microbial porA gene facilitates dietary phenylalanine conversion into phenylacetic acid, with subsequent host generation of PAGln and phenylacetylglycine (PAGly) fostering platelet responsiveness and thrombosis potential. Both gain- and loss-of-function studies employing genetic and pharmacological tools reveal PAGln mediates cellular events through G-protein coupled receptors, including α2A, α2B, and ß2-adrenergic receptors. PAGln thus represents a new CVD-promoting gut microbiota-dependent metabolite that signals via adrenergic receptors.


Cardiovascular Diseases/blood , Gastrointestinal Microbiome/genetics , Glutamine/analogs & derivatives , Thrombosis/metabolism , Animals , Arteries/injuries , Arteries/metabolism , Arteries/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Blood Platelets/metabolism , Blood Platelets/microbiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/microbiology , Cardiovascular Diseases/pathology , Death, Sudden, Cardiac/pathology , Glutamine/blood , Glutamine/genetics , Humans , Male , Metabolome/genetics , Metabolomics/methods , Mice , Myocardial Infarction/blood , Myocardial Infarction/microbiology , Platelet Activation/genetics , Receptors, Adrenergic, alpha/blood , Receptors, Adrenergic, alpha/genetics , Receptors, Adrenergic, beta/blood , Receptors, Adrenergic, beta/genetics , Risk Factors , Stroke/blood , Stroke/microbiology , Stroke/pathology , Thrombosis/genetics , Thrombosis/microbiology , Thrombosis/pathology
7.
Sci Signal ; 12(607)2019 11 12.
Article En | MEDLINE | ID: mdl-31719171

Myofibroblasts are key contributors to pathological fibrotic conditions of several major organs. The transdifferentiation of fibroblasts into myofibroblasts requires both a mechanical signal and transforming growth factor-ß (TGF-ß) signaling. The cation channel transient receptor potential vanilloid 4 (TRPV4) is a critical mediator of myofibroblast transdifferentiation and in vivo fibrosis through its mechanosensitivity to extracellular matrix stiffness. Here, we showed that TRPV4 promoted the transdifferentiation of human and mouse lung fibroblasts through its interaction with phosphoinositide 3-kinase γ (PI3Kγ), forming nanomolar-affinity, intracellular TRPV4-PI3Kγ complexes. TGF-ß induced the recruitment of TRPV4-PI3Kγ complexes to the plasma membrane and increased the activities of both TRPV4 and PI3Kγ. Using gain- and loss-of-function approaches, we showed that both TRPV4 and PI3Kγ were required for myofibroblast transdifferentiation as assessed by the increased production of α-smooth muscle actin and its incorporation into stress fibers, cytoskeletal changes, collagen-1 production, and contractile force. Expression of various mutant forms of the PI3Kγ catalytic subunit (p110γ) in cells lacking PI3Kγ revealed that only the noncatalytic, amino-terminal domain of p110γ was necessary and sufficient for TGF-ß-induced TRPV4 plasma membrane recruitment and myofibroblast transdifferentiation. These data suggest that TGF-ß stimulates a noncanonical scaffolding action of PI3Kγ, which recruits TRPV4-PI3Kγ complexes to the plasma membrane, thereby increasing myofibroblast transdifferentiation. Given that both TRPV4 and PI3Kγ have pleiotropic actions, targeting the interaction between them could provide a specific therapeutic approach for inhibiting myofibroblast transdifferentiation.


Cell Membrane/metabolism , Cell Transdifferentiation , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Myofibroblasts/metabolism , TRPV Cation Channels/metabolism , Animals , Cell Line , Cell Membrane/genetics , Cell Membrane/pathology , Class Ib Phosphatidylinositol 3-Kinase/genetics , Humans , Lung/metabolism , Lung/pathology , Mice , Myofibroblasts/pathology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , TRPV Cation Channels/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
8.
Int Rev Cell Mol Biol ; 339: 63-91, 2018.
Article En | MEDLINE | ID: mdl-29776605

Cellular responses to extracellular milieu/environment are driven by cell surface receptors that transmit the signal into the cells resulting in a synchronized and measured response. The ability to provide such exquisite responses to changes in external environment is mediated by the tight and yet, deliberate regulation of cell surface receptor function. In this regard, the seven transmembrane G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors that regulate responses like cardiac contractility, vision, and olfaction including platelet activation. GPCRs regulate these plethora of events through GPCR-activation, -desensitization, and -resensitization. External stimuli (ligands or agonists) activate GPCR initiating downstream signals. The activated GPCR undergoes inactivation or desensitization by phosphorylation and binding of ß-arrestin resulting in diminution of downstream signals. The desensitized GPCRs are internalized into endosomes, wherein they undergo dephosphorylation or resensitization by protein phosphatase to be recycled back to the cell membrane as naïve GPCR ready for the next wave of stimuli. Despite the knowledge that activation, desensitization, and resensitization shoulder an equal role in maintaining GPCR function, major advances have been made in understanding activation and desensitization compared to resensitization. However, increasing evidence shows that resensitization is exquisitely regulated process, thereby contributing to the dynamic regulation of GPCR function. In recognition of these observations, in this chapter we discuss the key advances on the mechanistic underpinning that drive and regulate GPCR function with a focus on resensitization.


Receptors, G-Protein-Coupled/metabolism , Animals , Humans , Models, Biological , Phosphorylation , Protein Transport , Signal Transduction
9.
Mol Biol Cell ; 28(22): 3112-3122, 2017 11 01.
Article En | MEDLINE | ID: mdl-28877982

Classically Class IB phosphoinositide 3-kinase (PI3Kγ) plays a role in extracellular signal-regulated kinase (ERK) activation following G-protein coupled receptor (GPCR) activation. Knock-down of PI3Kγ unexpectedly resulted in loss of ERK activation to receptor tyrosine kinase agonists such as epidermal growth factor or insulin. Mouse embryonic fibroblasts (MEFs) or primary adult cardiac fibroblasts isolated from PI3Kγ knock-out mice (PI3KγKO) showed decreased insulin-stimulated ERK activation. However, expression of kinase-dead PI3Kγ resulted in rescue of insulin-stimulated ERK activation. Mechanistically, PI3Kγ sequesters protein phosphatase 2A (PP2A), disrupting ERK-PP2A interaction, as evidenced by increased ERK-PP2A interaction and associated PP2A activity in PI3KγKO MEFs, resulting in decreased ERK activation. Furthermore, ß-blocker carvedilol-mediated ß-arrestin-dependent ERK activation is significantly reduced in PI3KγKO MEF, suggesting accelerated dephosphorylation. Thus, instead of classically mediating the kinase arm, PI3Kγ inhibits PP2A by scaffolding and sequestering, playing a key parallel synergistic step in sustaining the function of ERK, a nodal enzyme in multiple cellular processes.


Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Animals , Carbazoles , Carvedilol , Epidermal Growth Factor/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblasts/metabolism , Heart , Insulin/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mice , Mice, Knockout , Phosphorylation , Propanolamines , Protein Phosphatase 2/metabolism , Signal Transduction/drug effects , beta-Arrestins
10.
J Cardiovasc Pharmacol ; 70(2): 61-73, 2017 Aug.
Article En | MEDLINE | ID: mdl-28763371

Proinflammatory reaction by the body occurs acutely in response to injury that is considered primarily beneficial. However, sustained proinflammatory cytokines observed with chronic pathologies such as metabolic syndrome, cancer, and arthritis are detrimental and in many cases is a major cardiovascular risk factor. Proinflammatory cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α (TNFα) have long been implicated in cardiovascular risk and considered to be a major underlying cause for heart failure (HF). The failure of the anti-TNFα therapy for HF indicates our elusive understanding on the dichotomous role of proinflammatory cytokines on acutely beneficial effects versus long-term deleterious effects. Despite these well-described observations, less is known about the mechanistic underpinnings of proinflammatory cytokines especially TNFα in pathogenesis of HF. Increasing evidence suggests the existence of an active cross-talk between the TNFα receptor signaling and G-protein-coupled receptors such as ß-adrenergic receptor (ßAR). Given that ßARs are the key regulators of cardiac function, the review will discuss the current state of understanding on the role of proinflammatory cytokine TNFα in regulating ßAR function.


Cytokines/physiology , Inflammation Mediators/physiology , Receptors, G-Protein-Coupled/physiology , Animals , Humans , Inflammation/metabolism , Inflammation/physiopathology , Signal Transduction/physiology
11.
J Mol Biol ; 429(6): 763-772, 2017 03 24.
Article En | MEDLINE | ID: mdl-28179187

Traditionally, an enzyme is a protein that mediates biochemical action by binding to the substrate and by catalyzing the reaction that translates external cues into biological responses. Sequential dissemination of information from one enzyme to another facilitates signal transduction in biological systems providing for feed-forward and feed-back mechanisms. Given this viewpoint, an enzyme without its catalytic activity is generally considered to be an inert organizational protein without catalytic function and has classically been termed as pseudo-enzymes. However, pseudo-enzymes still have biological function albeit non-enzymatic like serving as a chaperone protein or an interactive platform between proteins. In this regard, majority of the studies have focused solely on the catalytic role of enzymes in biological function, overlooking the potentially critical non-enzymatic roles. Increasing evidence from recent studies implicate that the scaffolding function of enzymes could be as important in signal transduction as its catalytic activity, which is an antithesis to the definition of enzymes. Recognition of non-enzymatic functions could be critical, as these unappreciated roles may hold clues to the ineffectiveness of kinase inhibitors in pathology, which is characteristically associated with increased enzyme expression. Using an established enzyme phosphoinositide 3-kinase γ, we discuss the insights obtained from the scaffolding function and how this non-canonical role could contribute to/alter the outcomes in pathology like cancer and heart failure. Also, we hope that with this review, we provide a forum and a starting point to discuss the idea that catalytic function alone may not account for all the actions observed with increased expression of the enzyme.


Class Ib Phosphatidylinositol 3-Kinase/metabolism , Protein Multimerization , Signal Transduction , Catalysis
12.
Cell Signal ; 28(10): 1580-92, 2016 10.
Article En | MEDLINE | ID: mdl-27169346

ß2-Adrenergic receptors (ß2AR) transactivate epidermal growth factor receptors (EGFR) through formation of a ß2AR-EGFR complex that requires activation of Src to mediate signaling. Here, we show that both lipid and protein kinase activities of the bifunctional phosphoinositide 3-kinase (PI3K) enzyme are required for ß2AR-stimulated EGFR transactivation. Mechanistically, the generation of phosphatidylinositol (3,4,5)-tris-phosphate (PIP3) by the lipid kinase function stabilizes ß2AR-EGFR complexes while the protein kinase activity of PI3K regulates Src activation by direct phosphorylation. The protein kinase activity of PI3K phosphorylates serine residue 70 on Src to enhance its activity and induce EGFR transactivation following ßAR stimulation. This newly identified function for PI3K, whereby Src is a substrate for the protein kinase activity of PI3K, is of importance since Src plays a key role in pathological and physiological signaling.


ErbB Receptors/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Transcriptional Activation/genetics , src-Family Kinases/metabolism , Amino Acid Sequence , Biosensing Techniques , Endocytosis/drug effects , HEK293 Cells , Humans , Isoproterenol/pharmacology , Mass Spectrometry , Models, Biological , Phosphorylation/drug effects , Phosphoserine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , src-Family Kinases/chemistry
13.
Biochemistry ; 54(44): 6673-83, 2015 Nov 10.
Article En | MEDLINE | ID: mdl-26460884

Although interaction of a few G protein-coupled receptors (GPCRs) with Filamin A, a key actin cross-linking and biomechanical signal transducer protein, has been observed, a comprehensive structure-function analysis of this interaction is lacking. Through a systematic sequence-based analysis, we found that a conserved filamin binding motif is present in the cytoplasmic domains of >20% of the 824 GPCRs encoded in the human genome. Direct high-affinity interaction of filamin binding motif peptides of select GPCRs with the Ig domain of Filamin A was confirmed by nuclear magnetic resonance spectroscopy and isothermal titration calorimetric experiments. Engagement of the filamin binding motif with the Filamin A Ig domain induced the phosphorylation of filamin by protein kinase A in vitro. In transfected cells, agonist activation as well as constitutive activation of representative GPCRs dramatically elicited recruitment and phosphorylation of cellular Filamin A, a phenomenon long known to be crucial for regulating the structure and dynamics of the cytoskeleton. Our data suggest a molecular mechanism for direct GPCR-cytoskeleton coupling via filamin. Until now, GPCR signaling to the cytoskeleton was predominantly thought to be indirect, through canonical G protein-mediated signaling cascades involving GTPases, adenylyl cyclases, phospholipases, ion channels, and protein kinases. We propose that the GPCR-induced filamin phosphorylation pathway is a conserved, novel biochemical signaling paradigm.


Filamins/metabolism , Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Binding Sites , Cell Line , Cyclic AMP-Dependent Protein Kinases/metabolism , Filamins/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Receptors, G-Protein-Coupled/chemistry , Signal Transduction
14.
J Biol Chem ; 290(13): 8527-38, 2015 Mar 27.
Article En | MEDLINE | ID: mdl-25666618

Protein phosphorylation mediates essentially all aspects of cellular life. In humans, this is achieved by ∼500 kinases, each recognizing a specific consensus motif (CM) in the substrates. The majority of CMs are surface-exposed and are thought to be accessible to kinases for phosphorylation. Here we investigated the archetypical protein kinase A (PKA)-mediated phosphorylation of filamin, a major cytoskeletal protein that can adopt an autoinhibited conformation. Surprisingly, autoinhibited filamin is refractory to phosphorylation by PKA on a known Ser(2152) site despite its CM being exposed and the corresponding isolated peptide being readily phosphorylated. Structural analysis revealed that although the CM fits into the PKA active site its surrounding regions sterically clash with the kinase. However, upon ligand binding, filamin undergoes a conformational adjustment, allowing rapid phosphorylation on Ser(2152). These data uncover a novel ligand-induced conformational switch to trigger filamin phosphorylation. They further suggest a substrate shape-dependent filtering mechanism that channels specific exposed CM/kinase recognition in diverse signaling responses.


Cyclic AMP-Dependent Protein Kinases/chemistry , Filamins/chemistry , Protein Processing, Post-Translational , Amino Acid Sequence , Consensus Sequence , Humans , Molecular Sequence Data , Phosphopeptides/chemistry , Phosphorylation
15.
Proc Natl Acad Sci U S A ; 110(45): 18162-7, 2013 Nov 05.
Article En | MEDLINE | ID: mdl-24145431

Loss of muscle mass, or sarcopenia, is nearly universal in cirrhosis and adversely affects patient outcome. The underlying cross-talk between the liver and skeletal muscle mediating sarcopenia is not well understood. Hyperammonemia is a consistent abnormality in cirrhosis due to impaired hepatic detoxification to urea. We observed elevated levels of ammonia in both plasma samples and skeletal muscle biopsies from cirrhotic patients compared with healthy controls. Furthermore, skeletal muscle from cirrhotics had increased expression of myostatin, a known inhibitor of skeletal muscle accretion and growth. In vivo studies in mice showed that hyperammonemia reduced muscle mass and strength and increased myostatin expression in wild-type compared with postdevelopmental myostatin knockout mice. We postulated that hyperammonemia is an underlying link between hepatic dysfunction in cirrhosis and skeletal muscle loss. Therefore, murine C2C12 myotubes were treated with ammonium acetate resulting in intracellular concentrations similar to those in cirrhotic muscle. In this system, we demonstrate that hyperammonemia stimulated myostatin expression in a NF-κB-dependent manner. This finding was also observed in primary murine muscle cell cultures. Hyperammonemia triggered activation of IκB kinase, NF-κB nuclear translocation, binding of the NF-κB p65 subunit to specific sites within the myostatin promoter, and stimulation of myostatin gene transcription. Pharmacologic inhibition or gene silencing of NF-κB abolished myostatin up-regulation under conditions of hyperammonemia. Our work provides unique insights into hyperammonemia-induced myostatin expression and suggests a mechanism by which sarcopenia develops in cirrhotic patients.


Gene Expression Regulation/physiology , Hyperammonemia/physiopathology , Liver Cirrhosis/complications , Myostatin/metabolism , NF-kappa B/metabolism , Acetates , Animals , Chromatin Immunoprecipitation , Electrophoretic Mobility Shift Assay , Humans , Hyperammonemia/etiology , Immunoblotting , Mice , Mice, Knockout , Microscopy, Confocal , Muscle Fibers, Skeletal/metabolism , Myostatin/genetics , Real-Time Polymerase Chain Reaction
16.
Circulation ; 128(4): 377-87, 2013 Jul 23.
Article En | MEDLINE | ID: mdl-23785004

BACKGROUND: Proinflammatory cytokine tumor necrosis factor-α (TNFα) induces ß-adrenergic receptor (ßAR) desensitization, but mechanisms proximal to the receptor in contributing to cardiac dysfunction are not known. METHODS AND RESULTS: Two different proinflammatory transgenic mouse models with cardiac overexpression of myotrophin (a prohypertrophic molecule) or TNFα showed that TNFα alone is sufficient to mediate ßAR desensitization as measured by cardiac adenylyl cyclase activity. M-mode echocardiography in these mouse models showed cardiac dysfunction paralleling ßAR desensitization independent of sympathetic overdrive. TNFα-mediated ßAR desensitization that precedes cardiac dysfunction is associated with selective upregulation of G-protein coupled receptor kinase 2 (GRK2) in both mouse models. In vitro studies in ß2AR-overexpressing human embryonic kidney 293 cells showed significant ßAR desensitization, GRK2 upregulation, and recruitment to the ßAR complex following TNFα. Interestingly, inhibition of phosphoinositide 3-kinase abolished GRK2-mediated ßAR phosphorylation and GRK2 recruitment on TNFα. Furthermore, TNFα-mediated ßAR phosphorylation was not blocked with ßAR antagonist propranolol. Additionally, TNFα administration in transgenic mice with cardiac overexpression of Gßγ-sequestering peptide ßARK-ct could not prevent ßAR desensitization or cardiac dysfunction showing that GRK2 recruitment to the ßAR is Gßγ independent. Small interfering RNA knockdown of GRK2 resulted in the loss of TNFα-mediated ßAR phosphorylation. Consistently, cardiomyocytes from mice with cardiac-specific GRK2 ablation normalized the TNFα-mediated loss in contractility, showing that TNFα-induced ßAR desensitization is GRK2 dependent. CONCLUSIONS: TNFα-induced ßAR desensitization is mediated by GRK2 and is independent of Gßγ, uncovering a hitherto unknown cross-talk between TNFα and ßAR function, providing the underpinnings of inflammation-mediated cardiac dysfunction.


G-Protein-Coupled Receptor Kinase 2/metabolism , Heart Failure/metabolism , Myocytes, Cardiac/enzymology , Receptors, Adrenergic, beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adrenergic beta-Antagonists/pharmacology , Animals , Disease Models, Animal , HEK293 Cells , Heart Failure/pathology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Transgenic , Myocardial Contraction/physiology , Myocytes, Cardiac/cytology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/physiology , Propranolol/pharmacology , Receptors, Tumor Necrosis Factor, Type II/metabolism , Sympathetic Nervous System/physiology , Tumor Necrosis Factor-alpha/genetics
17.
J Mol Cell Cardiol ; 62: 131-41, 2013 Sep.
Article En | MEDLINE | ID: mdl-23735785

High fidelity genome-wide expression analysis has strengthened the idea that microRNA (miRNA) signatures in peripheral blood mononuclear cells (PBMCs) can be potentially used to predict the pathology when anatomical samples are inaccessible like the heart. PBMCs from 48 non-failing controls and 44 patients with relatively stable chronic heart failure (ejection fraction of ≤ 40%) associated with dilated cardiomyopathy (DCM) were used for miRNA analysis. Genome-wide miRNA-microarray on PBMCs from chronic heart failure patients identified miRNA signature uniquely characterized by the downregulation of miRNA-548 family members. We have also independently validated downregulation of miRNA-548 family members (miRNA-548c & 548i) using real time-PCR in a large cohort of independent patient samples. Independent in silico Ingenuity Pathway Analysis (IPA) of miRNA-548 targets shows unique enrichment of signaling molecules and pathways associated with cardiovascular disease and hypertrophy. Consistent with specificity of miRNA changes with pathology, PBMCs from breast cancer patients showed no alterations in miRNA-548c expression compared to healthy controls. These studies suggest that miRNA-548 family signature in PBMCs can therefore be used to detect early heart failure. Our studies show that cognate networking of predicted miRNA-548 targets in heart failure can be used as a powerful ancillary tool to predict the ongoing pathology.


Cardiomyopathy, Dilated/genetics , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , Breast Neoplasms/genetics , Cells, Cultured , Female , Gene Expression Profiling , Heart Failure/genetics , Humans , Male , Middle Aged
18.
Sci Signal ; 6(259): ra4, 2013 Jan 22.
Article En | MEDLINE | ID: mdl-23354687

Activation of cardiac phosphoinositide 3-kinase α (PI3Kα) by growth factors, such as insulin, or activation of PI3Kγ downstream of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors stimulates the activity of the kinase Akt, which phosphorylates and inhibits glycogen synthase kinase-3 (GSK-3). We found that PI3Kγ inhibited GSK-3 independently of the insulin-PI3Kα-Akt axis. Although insulin treatment activated Akt in PI3Kγ knockout mice, phosphorylation of GSK-3 was decreased compared to control mice. GSK-3 is activated when dephosphorylated by the protein phosphatase 2A (PP2A), which is activated when methylated by the PP2A methyltransferase PPMT-1. PI3Kγ knockout mice showed increased activity of PPMT-1 and PP2A and enhanced nuclear export of the GSK-3 substrate NFATc3. GSK-3 inhibits cardiac hypertrophy, and the hearts of PI3Kγ knockout mice were smaller compared to those of wild-type mice. Cardiac overexpression of a catalytically inactive PI3Kγ (PI3Kγ(inact)) transgene in PI3Kγ knockout mice reduced the activities of PPMT-1 and PP2A and increased phosphorylation of GSK-3. Furthermore, PI3Kγ knockout mice expressing the PI3Kγ(inact) transgene had larger hearts than wild-type or PI3Kγ knockout mice. Our studies show that a kinase-independent function of PI3Kγ could directly inhibit GSK-3 function by preventing the PP2A-PPMT-1 interaction and that this inhibition of GSK-3 was independent of Akt.


Cardiomegaly/enzymology , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Glycogen Synthase Kinase 3/metabolism , Muscle Proteins/metabolism , Myocardium/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Cardiomegaly/genetics , Cardiomegaly/pathology , Class Ib Phosphatidylinositol 3-Kinase/genetics , Enzyme Activation/genetics , Glycogen Synthase Kinase 3/genetics , HEK293 Cells , Humans , Mice , Mice, Knockout , Muscle Proteins/genetics , Myocardium/pathology , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins c-akt/genetics
19.
Curr Mol Pharmacol ; 2012 May 30.
Article En | MEDLINE | ID: mdl-22697395

G-protein coupled receptors (GPCRs) are seven transmembrane receptors that are pivotal regulators of cellular responses including vision, cardiac contractility, olfaction, and platelet activation. GPCRs have been a major target for drug discovery due to their role in regulating a broad range of physiological and pathological responses. GPCRs mediate these responses through a cyclical process of receptor activation (initiation of downstream signals), desensitization (inactivation that results in diminution of downstream signals), and resensitization (receptor reactivation for next wave of activation). Although these steps may be of equal importance in regulating receptor function, significant advances have been made in understanding activation and desensitization with limited effort towards resensitization. Inadequate importance has been given to resensitization due to the understanding that resensitization is a homeostasis maintaining process and is not acutely regulated. Evidence indicates that resensitization is a critical step in regulating GPCR function and may contribute towards receptor signaling and cellular responses. In light of these observations, it is imperative to discuss resensitization as a dynamic and mechanistic regulator of GPCR function. In this review we discuss components regulating GPCR function like activation, desensitization, and internalization with special emphasis on resensitization. Although we have used ß-adrenergic receptor as a proto-type GPCR to discuss mechanisms regulating receptor function, other GPCRs are also described to put forth a view point on the universality of such mechanisms.

20.
Cell Cycle ; 10(21): 3684-91, 2011 Nov 01.
Article En | MEDLINE | ID: mdl-22041711

G protein-coupled receptors are the largest family of cell surface receptors regulating multiple cellular processes. ß-adrenergic receptor (ßAR) is a prototypical member of GPCR family and has been one of the most well studied receptors in determining regulation of receptor function. Agonist activation of ßAR leads to conformational change resulting in coupling to G protein generating cAMP as secondary messenger. The activated ßAR is phosphorylated resulting in binding of ß-arrestin that physically interdicts further G protein coupling leading to receptor desensitization. The phosphorylated ßAR is internalized and undergoes resensitization by dephosphorylation mediated by protein phosphatase 2A in the early endosomes. Although desensitization and resensitization are two sides of the same coin maintaining the homeostatic functioning of the receptor, significant interest has revolved around understanding mechanisms of receptor desensitization while little is known about resensitization. In our current review we provide an overview on regulation of ßAR function with a special emphasis on receptor resensitization and its functional relevance in the context of fine tuning receptor signaling.


Receptors, Adrenergic, beta/physiology , Arrestins/metabolism , Cyclic AMP/metabolism , Endosomes/metabolism , Endosomes/physiology , GTP-Binding Proteins/metabolism , Models, Biological , Phosphorylation , Protein Interaction Domains and Motifs , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/physiology , Receptors, Adrenergic, beta/chemistry , Signal Transduction , beta-Arrestins
...