Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
J Med Chem ; 64(20): 14968-14982, 2021 10 28.
Article En | MEDLINE | ID: mdl-34661404

Prostate cancer (PCa) patients undergoing androgen deprivation therapy almost invariably develop castration-resistant prostate cancer (CRPC). Targeting the androgen receptor (AR) Binding Function-3 (BF3) site offers a promising option to treat CRPC. However, BF3 inhibitors have been limited by poor potency or inadequate metabolic stability. Through extensive medicinal chemistry, molecular modeling, and biochemistry, we identified 2-(5,6,7-trifluoro-1H-Indol-3-yl)-quinoline-5-carboxamide (VPC-13789), a potent AR BF3 antagonist with markedly improved pharmacokinetic properties. We demonstrate that VPC-13789 suppresses AR-mediated transcription, chromatin binding, and recruitment of coregulatory proteins. This novel AR antagonist selectively reduces the growth of both androgen-dependent and enzalutamide-resistant PCa cell lines. Having demonstrated in vitro efficacy, we developed an orally bioavailable prodrug that reduced PSA production and tumor volume in animal models of CRPC with no observed toxicity. VPC-13789 is a potent, selective, and orally bioavailable antiandrogen with a distinct mode of action that has a potential as novel CRPC therapeutics.


Androgen Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Drug Development , Prostatic Neoplasms, Castration-Resistant/drug therapy , Quinolines/pharmacology , Receptors, Androgen/metabolism , Administration, Oral , Androgen Antagonists/administration & dosage , Androgen Antagonists/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Models, Molecular , Molecular Structure , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Quinolines/administration & dosage , Quinolines/chemistry , Structure-Activity Relationship
2.
Chembiochem ; 17(23): 2264-2273, 2016 12 02.
Article En | MEDLINE | ID: mdl-27653508

UDP-galactopyranose mutase (UGM), a key enzyme in the biosynthesis of mycobacterial cell walls, is a potential target for the treatment of tuberculosis. In this work, we investigate binding models of a non-substrate-like inhibitor, MS-208, with M. tuberculosis UGM. Initial saturation transfer difference (STD) NMR experiments indicated a lack of direct competition between MS-208 and the enzyme substrate, and subsequent kinetic assays showed mixed inhibition. We thus hypothesized that MS-208 binds at an allosteric binding site (A-site) instead of the enzyme active site (S-site). A candidate A-site was identified in a subsequent computational study, and the overall hypothesis was supported by ensuing mutagenesis studies of the A-site. Further molecular dynamics studies led us to propose that MS-208 inhibition occurs by preventing complete closure of an active site mobile loop that is necessary for productive substrate binding. The results suggest the presence of an A-site with potential druggability, opening up new opportunities for the development of novel drug candidates against tuberculosis.


Enzyme Inhibitors/pharmacology , Intramolecular Transferases/antagonists & inhibitors , Mycobacterium tuberculosis/enzymology , Pyrazoles/pharmacology , Binding Sites/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Intramolecular Transferases/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Pyrazoles/chemistry , Structure-Activity Relationship
3.
J Virol ; 90(23): 10693-10700, 2016 Dec 01.
Article En | MEDLINE | ID: mdl-27654293

Influenza virus neuraminidase (NA) drug resistance is one of the challenges to preparedness against epidemic and pandemic influenza virus infections. NA N1- and N2-containing influenza viruses are the primary cause of seasonal epidemics and past pandemics. The structural and functional basis underlying drug resistance of the influenza virus N1 NA is well characterized. Yet drug resistance of the N2 strain is not well understood. Here, we confirm that replacement of N2 E119 or I222 results in multidrug resistance, and when the replacements occur together, the sensitivity to NA inhibitors (NAI) is reduced severely. Using crystallographic studies, we showed that E119 replacement results in a loss of hydrogen bonding to oseltamivir and zanamivir, whereas I222 replacement results in a change in the hydrophobic environment that is critical for oseltamivir binding. Moreover, we found that MS-257, a zanamivir-oseltamivir hybrid inhibitor, is less susceptible to drug resistance. The binding mode of MS-257 shows that increased hydrogen bonding interactions between the inhibitor and NA active site anchor the inhibitor within the active site and allow adjustments in response to active-site modifications. Such stability is likely responsible for the observed reduced susceptibility to drug resistance. MS-257 serves as a next-generation anti-influenza virus drug candidate and serves also as a scaffold for further design of NAIs. IMPORTANCE: Oseltamivir and zanamivir are the two major antiviral drugs available for the treatment of influenza virus infections. However, multidrug-resistant viruses have emerged in clinical cases, which pose a challenge for the development of new drugs. N1 and N2 subtypes exist in the viruses which cause seasonal epidemics and past pandemics. Although N1 drug resistance is well characterized, the molecular mechanisms underlying N2 drug resistance are unknown. A previous report showed that an N2 E119V/I222L dual mutant conferred drug resistance to seasonal influenza virus. Here, we confirm that these substitutions result in multidrug resistance and dramatically reduced sensitivity to NAI. We further elucidate the molecular mechanism underlying N2 drug resistance by solving crystal structures of the N2 E119V and I222L mutants and the dual mutant. Most importantly, we found that a novel oseltamivir-zanamivir hybrid inhibitor, MS-257, remains more effective against drug-resistant N2 and is a promising candidate as a next-generation anti-influenza virus drug.


Antiviral Agents/pharmacology , Influenza A virus/drug effects , Influenza A virus/enzymology , Mutation , Neuraminidase/antagonists & inhibitors , Neuraminidase/genetics , Oseltamivir/pharmacology , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics , Zanamivir/pharmacology , Amino Acid Substitution , Drug Resistance, Multiple, Viral/genetics , Enzyme Inhibitors/pharmacology , Humans , Influenza A virus/genetics , Models, Molecular , Neuraminidase/chemistry , Viral Proteins/chemistry
4.
Proc Natl Acad Sci U S A ; 113(21): 6035-40, 2016 May 24.
Article En | MEDLINE | ID: mdl-27162343

The primary sweet sensor in mammalian taste cells for sugars and noncaloric sweeteners is the heteromeric combination of type 1 taste receptors 2 and 3 (T1R2+T1R3, encoded by Tas1r2 and Tas1r3 genes). However, in the absence of T1R2+T1R3 (e.g., in Tas1r3 KO mice), animals still respond to sugars, arguing for the presence of T1R-independent detection mechanism(s). Our previous findings that several glucose transporters (GLUTs), sodium glucose cotransporter 1 (SGLT1), and the ATP-gated K(+) (KATP) metabolic sensor are preferentially expressed in the same taste cells with T1R3 provides a potential explanation for the T1R-independent detection of sugars: sweet-responsive taste cells that respond to sugars and sweeteners may contain a T1R-dependent (T1R2+T1R3) sweet-sensing pathway for detecting sugars and noncaloric sweeteners, as well as a T1R-independent (GLUTs, SGLT1, KATP) pathway for detecting monosaccharides. However, the T1R-independent pathway would not explain responses to disaccharide and oligomeric sugars, such as sucrose, maltose, and maltotriose, which are not substrates for GLUTs or SGLT1. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we found that taste cells express multiple α-glycosidases (e.g., amylase and neutral α glucosidase C) and so-called intestinal "brush border" disaccharide-hydrolyzing enzymes (e.g., maltase-glucoamylase and sucrase-isomaltase). Treating the tongue with inhibitors of disaccharidases specifically decreased gustatory nerve responses to disaccharides, but not to monosaccharides or noncaloric sweeteners, indicating that lingual disaccharidases are functional. These taste cell-expressed enzymes may locally break down dietary disaccharides and starch hydrolysis products into monosaccharides that could serve as substrates for the T1R-independent sugar sensing pathways.


Disaccharides/pharmacology , Gene Expression Regulation, Enzymologic/physiology , Taste Buds/enzymology , Taste/physiology , alpha-Glucosidases/biosynthesis , Animals , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Mice , Mice, Transgenic , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/metabolism , alpha-Glucosidases/genetics
5.
Carbohydr Res ; 419: 1-7, 2016 Jan.
Article En | MEDLINE | ID: mdl-26595659

Uridine diphosphate-galactopyranose mutase (UGM), an enzyme found in many eukaryotic and prokaryotic human pathogens, catalyzes the interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf), the latter being used as the biosynthetic precursor of the galactofuranose polymer portion of the mycobacterium cell wall. We report here the synthesis of a sulfonium and selenonium ion with an appended polyhydroxylated side chain. These compounds were designed as transition state mimics of the UGM-catalyzed reaction, where the head groups carrying a permanent positive charge were designed to mimic both the shape and positive charge of the proposed galactopyranosyl cation-like transition state. An HPLC-based UGM inhibition assay indicated that the compounds inhibited about 25% of UGM activity at 500 µM concentration.


Drug Design , Enzyme Inhibitors/pharmacology , Galactose/analogs & derivatives , Isomerases/antagonists & inhibitors , Uridine Diphosphate/analogs & derivatives , Biocatalysis , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Galactose/metabolism , Hydroxylation , Isomerases/metabolism , Mycobacterium tuberculosis/enzymology , Selenium Compounds/chemical synthesis , Selenium Compounds/chemistry , Selenium Compounds/pharmacology , Sulfonium Compounds/chemical synthesis , Sulfonium Compounds/chemistry , Sulfonium Compounds/pharmacology , Uridine Diphosphate/metabolism
6.
Br J Cancer ; 113(8): 1225-33, 2015 Oct 20.
Article En | MEDLINE | ID: mdl-26379078

BACKGROUND: PTEN gene loss occurs frequently in castration-resistant prostate cancer (CRPC) and may drive progression through activation of the PI3K/AKT pathway. Here, we developed a novel CTC-based assay to determine PTEN status and examined the correlation between PTEN status in CTCs and matched tumour tissue samples. METHODS: PTEN gene status in CTCs was evaluated on an enrichment-free platform (Epic Sciences) by fluorescence in situ hybridisation (FISH). PTEN status in archival and fresh tumour tissue was evaluated by FISH and immunohistochemistry. RESULTS: Peripheral blood was collected from 76 patients. Matched archival and fresh cancer tissue was available for 48 patients. PTEN gene status detected in CTCs was concordant with PTEN status in matched fresh tissues and archival tissue in 32 of 38 patients (84%) and 24 of 39 patients (62%), respectively. CTC counts were prognostic (continuous, P=0.001). PTEN loss in CTCs associated with worse survival in univariate analysis (HR 2.05; 95% CI 1.17-3.62; P=0.01) and with high lactate dehydrogenase (LDH) in metastatic CRPC patients. CONCLUSIONS: Our results illustrate the potential use of CTCs as a non-invasive, real-time liquid biopsy to determine PTEN gene status. The prognostic and predictive value of PTEN in CTCs warrants investigation in CRPC clinical trials of PI3K/AKT-targeted therapies.


Neoplastic Cells, Circulating/pathology , PTEN Phosphohydrolase/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Aged , Disease Progression , Humans , Immunohistochemistry/methods , In Situ Hybridization, Fluorescence/methods , L-Lactate Dehydrogenase/genetics , Male , Phosphatidylinositol 3-Kinases/genetics , Prognosis , Prostatic Neoplasms, Castration-Resistant/metabolism
7.
Clin Cancer Res ; 20(17): 4488-98, 2014 Sep 01.
Article En | MEDLINE | ID: mdl-24687921

PURPOSE: In a recent phase II study of onartuzumab (MetMAb), patients whose non-small cell lung cancer (NSCLC) tissue scored as positive for MET protein by immunohistochemistry (IHC) experienced a significant benefit with onartuzumab plus erlotinib (O+E) versus erlotinib. We describe development and validation of a standardized MET IHC assay and, retrospectively, evaluate multiple biomarkers as predictors of patient benefit. EXPERIMENTAL DESIGN: Biomarkers related to MET and/or EGF receptor (EGFR) signaling were measured by IHC, FISH, quantitative reverse transcription PCR, mutation detection techniques, and ELISA. RESULTS: A positive correlation between IHC, Western blotting, and MET mRNA expression was observed in NSCLC cell lines/tissues. An IHC scoring system of MET expression taking proportional and intensity-based thresholds into consideration was applied in an analysis of the phase II study and resulted in the best differentiation of outcomes. Further analyses revealed a nonsignificant overall survival (OS) improvement with O+E in patients with high MET copy number (mean≥5 copies/cell by FISH); however, benefit was maintained in "MET IHC-positive"/MET FISH-negative patients (HR, 0.37; P=0.01). MET, EGFR, amphiregulin, epiregulin, or HGF mRNA expression did not predict a significant benefit with onartuzumab; a nonsignificant OS improvement was observed in patients with high tumor MET mRNA levels (HR, 0.59; P=0.23). Patients with low baseline plasma hepatocyte growth factor (HGF) exhibited an HR for OS of 0.519 (P=0.09) in favor of onartuzumab treatment. CONCLUSIONS: MET IHC remains the most robust predictor of OS and progression-free survival benefit from O+E relative to all examined exploratory markers.


Antibodies, Monoclonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Proto-Oncogene Proteins c-met/biosynthesis , Quinazolines/administration & dosage , Adolescent , Adult , Aged , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Disease-Free Survival , ErbB Receptors/biosynthesis , Erlotinib Hydrochloride , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Neoplasm Staging , RNA, Messenger/biosynthesis
8.
Acc Chem Res ; 47(1): 211-25, 2014 Jan 21.
Article En | MEDLINE | ID: mdl-23964564

In humans, four different enzymes mediate the digestion of ingested carbohydrates. First salivary and pancreatic α-amylases, the two endoacting retaining glucosidases, break down the complex starch molecules into smaller linear maltose-oligomers (LM) and branched α-limit dextrins (αLDx). Then two retaining exoglucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI), convert those molecules into glucose in the small intestine. The small intestinal brush-border epithelial cells anchor MGAM and SI, and each contains a catalytic N- and C-terminal subunit, ntMGAM, ctMGAM, ntSI, and ctSI, respectively. All four catalytic domains have, to varying extents, α-1,4-exohydrolytic glucosidase activity and belong to the glycoside hydrolase family 31 (GH31). ntSI and ctSI show additional activity toward α-1,6 (isomaltose substrates) and α-1,2 (sucrose) glycosidic linkages, respectively. Because they mediate the final steps of starch digestion, both MGAM and SI are important target enzymes for the treatment of type-2 diabetes. Because of their potent inhibitory activities against the mammalian intestinal α-glucosidases, sulfonium-ion glucosidase inhibitors isolated from the antidiabetic herbal extracts of various Salacia species have received considerable attention recently. Thus far, researchers have isolated eight sulfonium-ion glucosidase inhibitors from Salacia species: salaprinol, salacinol, ponkoranol, kotalanol, and four of their corresponding de-O-sulfonated compounds, the structures of which comprise a 1,4-anhydro-4-thio-d-arabinitol and a polyhydroxylated acyclic side chain. Some of these compounds more strongly inhibit human intestinal α-glucosidases than the currently available antidiabetic drugs, acarbose and miglitol, and could serve as lead candidates in the treatment of type-2 diabetes. In this Account, we summarize progress in the field since 2010 with this class of inhibitors, with particular focus on their selective inhibitory activities against the intestinal glucosidases. Through structure-activity relationship (SAR) studies, we have modified the natural compounds to derive more potent, nanomolar inhibitors of human MGAM and SI. This structural optimization also yielded the most potent inhibitors known to date for each subunit. Furthermore, we observed that some of our synthetic inhibitors selectively blocked the activity of some mucosal α-glucosidases. Those results led to our current working hypothesis that selective inhibitors can dampen the action of a fast digesting subunit or subunits which places the burden of digestion on slower digesting subunits. That strategy can control the rate of starch digestion and glucose release to the body. Decreasing the initial glucose spike after a carbohydrate-rich meal and extending postprandial blood glucose delivery to the body can be desirable for diabetics and patients with other metabolic syndrome-associated diseases.


Biological Products/pharmacology , Enzyme Inhibitors/pharmacology , Glucosidases/antagonists & inhibitors , Hypoglycemic Agents/pharmacology , Sulfur Compounds/pharmacology , Animals , Biological Products/chemistry , Enzyme Inhibitors/chemistry , Humans , Hypoglycemic Agents/chemistry , Structure-Activity Relationship , Sulfur Compounds/chemistry
9.
Angew Chem Int Ed Engl ; 53(4): 1076-80, 2014 Jan 20.
Article En | MEDLINE | ID: mdl-24339250

We have previously reported a potent neuraminidase inhibitor that comprises a carbocyclic analogue of zanamivir in which the hydrophilic glycerol side chain is replaced by the hydrophobic 3-pentyloxy group of oseltamivir. This hybrid inhibitor showed excellent inhibitory properties in the neuraminidase inhibition assay (Ki =0.46 nM; Ki (zanamivir) =0.16 nM) and in the viral replication inhibition assay in cell culture at 10(-8) M. As part of this lead optimization, we now report a novel spirolactam that shows comparable inhibitory activity in the cell culture assay to that of our lead compound at 10(-7) M. The compound was discovered serendipitously during the attempted synthesis of the isothiourea derivative of the original candidate. The X-ray crystal structure of the spirolactam in complex with the N8 subtype neuraminidase offers insight into the mode of inhibition.


Drug Discovery , Enzyme Inhibitors/pharmacology , Lactams/pharmacology , Neuraminidase/antagonists & inhibitors , Spiro Compounds/pharmacology , Viral Proteins/antagonists & inhibitors , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Lactams/chemical synthesis , Lactams/chemistry , Models, Molecular , Molecular Conformation , Neuraminidase/metabolism , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship , Viral Proteins/metabolism
10.
Cell Cycle ; 13(2): 303-14, 2014.
Article En | MEDLINE | ID: mdl-24247149

Activation of Checkpoint kinase 1 (Chk1) following DNA damage mediates cell cycle arrest to prevent cells with damaged DNA from entering mitosis. Here we provide a high-resolution analysis of cells as they undergo S- and G2-checkpoint bypass in response to Chk1 inhibition with the selective Chk1 inhibitor GNE-783. Within 4-8 h of Chk1 inhibition following gemcitabine induced DNA damage, cells with both sub-4N and 4N DNA content prematurely enter mitosis. Coincident with premature transition into mitosis, levels of DNA damage dramatically increase and chromosomes condense and attempt to align along the metaphase plate. Despite an attempt to congress at the metaphase plate, chromosomes rapidly fragment and lose connection to the spindle microtubules. Gemcitabine mediated DNA damage promotes the formation of Rad51 foci; however, while Chk1 inhibition does not disrupt Rad51 foci that are formed in response to gemcitabine, these foci are lost as cells progress into mitosis. Premature entry into mitosis requires the Aurora, Cdk1/2 and Plk1 kinases and even though caspase-2 and -3 are activated upon mitotic exit, they are not required for cell death. Interestingly, p53, but not p21, deficiency enables checkpoint bypass and chemo-potentiation. Finally, we uncover a differential role for the Wee-1 checkpoint kinase in response to DNA damage, as Wee-1, but not Chk1, plays a more prominent role in the maintenance of S- and G2-checkpoints in p53 proficient cells.


Caspases/metabolism , Chromosomes, Human/genetics , DNA Fragmentation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Tumor Suppressor Protein p53/genetics , Carbolines/pharmacology , Cell Cycle Proteins/metabolism , Cell Death/drug effects , Cell Line, Tumor , Checkpoint Kinase 1 , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Enzyme Activation , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Mitosis/drug effects , Nuclear Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Rad51 Recombinase/metabolism , S Phase Cell Cycle Checkpoints/drug effects , Tumor Suppressor Protein p53/metabolism , Gemcitabine
11.
Sci Rep ; 3: 2871, 2013 Oct 16.
Article En | MEDLINE | ID: mdl-24129600

The influenza virus neuraminidase (NA) is essential for the virus life cycle. The rise of resistance mutations against current antiviral therapies has increased the need for the development of novel inhibitors. Recent efforts have targeted a cavity adjacent to the catalytic site (the 150-cavity) in addition to the primary catalytic subsite in order to increase specificity and reduce the likelihood of resistance. This study details structural and in vitro analyses of a class of inhibitors that bind uniquely in both subsites. Crystal structures of three inhibitors show occupation of the 150-cavity in two distinct and novel binding modes. We believe these are the first nanomolar inhibitors of NA to be characterized in this way. Furthermore, we show that one inhibitor, binding within the catalytic site, offers reduced susceptibility to known resistance mutations via increased flexibility of a pendant pentyloxy group and the ability to pivot about a strong hydrogen-bonding network.


Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Influenza A virus/enzymology , Neuraminidase/chemistry , Viral Proteins/chemistry , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Catalytic Domain , Cell Line , Drug Resistance, Viral , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A virus/drug effects , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Molecular Structure , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Oseltamivir/chemistry , Oseltamivir/pharmacology , Protein Binding , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism
12.
Clin Cancer Res ; 18(24): 6771-83, 2012 Dec 15.
Article En | MEDLINE | ID: mdl-23136191

PURPOSE: Class 1 phosphatidylinositol 3-kinase (PI3K) plays a major role in cell proliferation and survival in a wide variety of human cancers. Here, we investigated biomarker strategies for PI3K pathway inhibitors in non-small-cell lung cancer (NSCLC). EXPERIMENTAL DESIGN: Molecular profiling for candidate PI3K predictive biomarkers was conducted on a collection of NSCLC tumor samples. Assays included comparative genomic hybridization, reverse-transcription polymerase chain reaction gene expression, mutation detection for PIK3CA and other oncogenes, PTEN immunohistochemistry, and FISH for PIK3CA copy number. In addition, a panel of NSCLC cell lines characterized for alterations in the PI3K pathway was screened with PI3K and dual PI3K/mTOR inhibitors to assess the preclinical predictive value of candidate biomarkers. RESULTS: PIK3CA amplification was detected in 37% of squamous tumors and 5% of adenocarcinomas, whereas PIK3CA mutations were found in 9% of squamous and 0% of adenocarcinomas. Total loss of PTEN immunostaining was found in 21% of squamous tumors and 4% of adenocarcinomas. Cell lines harboring pathway alterations (receptor tyrosine kinase activation, PI3K mutation or amplification, and PTEN loss) were exquisitely sensitive to the PI3K inhibitor GDC-0941. A dual PI3K/mTOR inhibitor had broader activity across the cell line panel and in tumor xenografts. The combination of GDC-0941 with paclitaxel, erlotinib, or a mitogen-activated protein-extracellular signal-regulated kinase inhibitor had greater effects on cell viability than PI3K inhibition alone. CONCLUSIONS: Candidate biomarkers for PI3K inhibitors have predictive value in preclinical models and show histology-specific alterations in primary tumors, suggesting that distinct biomarker strategies may be required in squamous compared with nonsquamous NSCLC patient populations.


Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Carcinoma, Non-Small-Cell Lung/enzymology , Indazoles/pharmacology , Lung Neoplasms/enzymology , Phosphatidylinositol 3-Kinases/metabolism , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Comparative Genomic Hybridization , DNA Copy Number Variations , DNA Mutational Analysis , Drug Synergism , Erlotinib Hydrochloride , Female , Gene Amplification , Humans , Inhibitory Concentration 50 , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Mice, Nude , Molecular Targeted Therapy , PTEN Phosphohydrolase/metabolism , Paclitaxel/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors , Quinazolines/pharmacology , Signal Transduction , Transcriptome , Xenograft Model Antitumor Assays
13.
Int J Antimicrob Agents ; 40(3): 273-6, 2012 Sep.
Article En | MEDLINE | ID: mdl-22784856

Enzymes involved in N-glycan processing are targets of interest in the inhibition of host processes for the blockade of dengue virus (DENV) morphogenesis. Of the ten proteins encoded by DENV, three have N-glycosylation sites, namely pre-membrane/membrane protein (prM/M), envelope protein (E) and non-structural protein-1 (NS1). It is known that aberrations in the oligosaccharide portions at these N-glycan sites affect proper folding of these proteins during the translation process that, in turn, affects the morphogenesis of the budding DENV. Here we report on the testing for antiviral activity of four known sulfonium-ion α-glucosidase inhibitors and two 5-thiomannosylamine disaccharide derivatives against DENV. Two of the sulfonium ions tested, namely, kotalanol and its de-O-sulfonated derivative, naturally occurring potent intestinal α-glucosidase inhibitors, had comparable inhibitory activity [50% inhibitory concentration (IC(50))=25.1±13.1 µM and 50.4±8.6 µM, respectively] with that of ribavirin (IC(50)=25.2±8.3 µM), a commercially available antiviral agent. The 5-thiomannosylamines did not show any activity at the concentrations tested.


Amino Sugars/pharmacology , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Disaccharides/pharmacology , Enzyme Inhibitors/pharmacology , Sulfonium Compounds/pharmacology , Animals , Chlorocebus aethiops , Glycoside Hydrolase Inhibitors , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Vero Cells
14.
J Clin Oncol ; 29(34): 4482-90, 2011 Dec 01.
Article En | MEDLINE | ID: mdl-22025148

PURPOSE: Mutation in isocitrate dehydrogenase 1 (IDH1) at R132 (IDH1(R132MUT)) is frequent in low-grade diffuse gliomas and, within glioblastoma (GBM), has been proposed as a marker for GBMs that arise by transformation from lower-grade gliomas, regardless of clinical history. To determine how GBMs arising with IDH1(R132MUT) differ from other GBMs, we undertook a comprehensive comparison of patients presenting clinically with primary GBM as a function of IDH1(R132) mutation status. PATIENTS AND METHODS: In all, 618 treatment-naive primary GBMs and 235 lower-grade diffuse gliomas were sequenced for IDH1(R132) and analyzed for demographic, radiographic, anatomic, histologic, genomic, epigenetic, and transcriptional characteristics. RESULTS: Investigation revealed a constellation of features that distinguishes IDH1(R132MUT) GBMs from other GBMs (including frontal location and lesser extent of contrast enhancement and necrosis), relates them to lower-grade IDH1(R132MUT) gliomas, and supports the concept that IDH1(R132MUT) gliomas arise from a neural precursor population that is spatially and temporally restricted in the brain. The observed patterns of DNA sequence, methylation, and copy number alterations support a model of ordered molecular evolution of IDH1(R132MUT) GBM in which the appearance of mutant IDH1 protein is an initial event, followed by production of p53 mutant protein, and finally by copy number alterations of PTEN and EGFR. CONCLUSION: Although histologically similar, GBMs arising with and without IDH1(R132MUT) appear to represent distinct disease entities that arise from separate cell types of origin as the result of largely nonoverlapping sets of molecular events. Optimal clinical management should account for the distinction between these GBM disease subtypes.


Brain Neoplasms/genetics , Cell Lineage , Evolution, Molecular , Glioblastoma/genetics , Isocitrate Dehydrogenase/genetics , Adult , Aged , Aged, 80 and over , Base Sequence , Cell Transformation, Neoplastic/genetics , Female , Genes, p53 , Glioma/genetics , Humans , Male , Middle Aged , Mutation
15.
Eur J Med Chem ; 46(9): 3877-86, 2011 Sep.
Article En | MEDLINE | ID: mdl-21703733

The synthesis and biological evaluation of the new cholestane glycoside (25R)-3ß,16ß-diacetoxy-22-oxocholest-5-en-26-yl ß-d-glucopyranoside starting from diosgenin is described. This compound showed selective antiproliferative activity against CaSki, ViBo, and HeLa cervicouterine cancer cells. Its effect on the cell-cycle was determined. The cytotoxic effects of the title compound on cervicouterine cancer cell lines and human lymphocytes indicate that the main cell death process is not necrosis; hence it is not cytotoxic. The title compound induced apoptosis in cervicouterine cancer cells. Importantly, the antiproliferative activity on tumor cells did not affect the proliferative potential of peripheral blood lymphocytes. The title compound showed selective antitumor activity and greater antiproliferative activity than its aglycon, and therefore serves as a promising lead candidate for further optimization.


Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cholesterol/analogs & derivatives , Glucosides/chemical synthesis , Glucosides/pharmacology , Antineoplastic Agents/chemistry , Caspase 3/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cholesterol/chemical synthesis , Cholesterol/chemistry , Cholesterol/pharmacology , DNA Fragmentation , Female , Glucosides/chemistry , Humans , Lymphocytes/cytology , Lymphocytes/drug effects , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Uterine Cervical Neoplasms/pathology
16.
Bioorg Med Chem ; 19(13): 3929-34, 2011 Jul 01.
Article En | MEDLINE | ID: mdl-21669536

Inhibition of intestinal α-glucosidases and pancreatic α-amylases is an approach to controlling blood glucose and serum insulin levels in individuals with Type II diabetes. The two human intestinal glucosidases are maltase-glucoamylase and sucrase-isomaltase. Each incorporates two family 31 glycoside hydrolases responsible for the final step of starch hydrolysis. Here we compare the inhibition profiles of the individual N- and C-terminal catalytic subunits of both glucosidases by clinical glucosidase inhibitors, acarbose and miglitol, and newly discovered glucosidase inhibitors from an Ayurvedic remedy used for the treatment of Type II diabetes. We show that features of the compounds introduce selectivity towards the subunits. Together with structural data, the results enhance the understanding of the role of each catalytic subunit in starch digestion, helping to guide the development of new compounds with subunit specific antidiabetic activity. The results may also have relevance to other metabolic diseases such as obesity and cardiovascular disease.


Starch/metabolism , Sucrase-Isomaltase Complex/metabolism , alpha-Glucosidases/metabolism , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/chemistry , 1-Deoxynojirimycin/pharmacology , Acarbose/chemistry , Acarbose/pharmacology , Catalytic Domain , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors , Kinetics , Monosaccharides/chemistry , Selenium Compounds/chemistry , Selenium Compounds/pharmacology , Sucrase-Isomaltase Complex/antagonists & inhibitors , Sugar Alcohols/chemistry , Sugar Alcohols/pharmacology , Sulfates/chemistry , Sulfates/pharmacology
17.
Nature ; 474(7351): 403-6, 2011 May 15.
Article En | MEDLINE | ID: mdl-21572435

The proto-oncogenes ETV1, ETV4 and ETV5 encode transcription factors in the E26 transformation-specific (ETS) family, which includes the most frequently rearranged and overexpressed genes in prostate cancer. Despite being critical regulators of development, little is known about their post-translational regulation. Here we identify the ubiquitin ligase COP1 (also known as RFWD2) as a tumour suppressor that negatively regulates ETV1, ETV4 and ETV5. ETV1, which is mutated in prostate cancer more often, was degraded after being ubiquitinated by COP1. Truncated ETV1 encoded by prostate cancer translocation TMPRSS2:ETV1 lacks the critical COP1 binding motifs and was 50-fold more stable than wild-type ETV1. Almost all patient translocations render ETV1 insensitive to COP1, implying that this confers a selective advantage to prostate epithelial cells. Indeed, COP1 deficiency in mouse prostate elevated ETV1 and produced increased cell proliferation, hyperplasia, and early prostate intraepithelial neoplasia. Combined loss of COP1 and PTEN enhanced the invasiveness of mouse prostate adenocarcinomas. Finally, rare human prostate cancer samples showed hemizygous loss of the COP1 gene, loss of COP1 protein, and elevated ETV1 protein while lacking a translocation event. These findings identify COP1 as a tumour suppressor whose downregulation promotes prostatic epithelial cell proliferation and tumorigenesis.


Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Amino Acid Motifs , Animals , Carrier Proteins/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Male , Mice , Nuclear Proteins/deficiency , PTEN Phosphohydrolase/deficiency , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics , Ubiquitination
18.
Bioorg Med Chem ; 19(9): 2817-22, 2011 May 01.
Article En | MEDLINE | ID: mdl-21489803

The viral neuraminidase enzyme is an established target for anti-influenza pharmaceuticals. However, viral neuraminidase inhibitors could have off-target effects due to interactions with native human neuraminidase enzymes. We report the activity of a series of known inhibitors of the influenza group-1 neuraminidase enzyme (N1 subtype) against recombinant forms of the human neuraminidase enzymes NEU3 and NEU4. These inhibitors were designed to take advantage of an additional enzyme pocket (known as the 150-cavity) near the catalytic site of certain viral neuraminidase subtypes (N1, N4 and N8). We find that these modified derivatives have minimal activity against the human enzymes, NEU3 and NEU4. Two compounds show moderate activity against NEU3, possibly due to alternative binding modes available to these structures. Our results reinforce that recognition of the glycerol side-chain is distinct between the viral and human NEU enzymes, and provide experimental support for improving the selectivity of viral neuraminidase inhibitors by exploiting the 150-cavity found in certain subtypes of viral neuraminidases.


Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Neuraminidase/antagonists & inhibitors , Oseltamivir/chemistry , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Catalytic Domain , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Humans , Influenza A virus/enzymology , Neuraminidase/metabolism , Oseltamivir/chemical synthesis , Oseltamivir/pharmacology , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Structure-Activity Relationship , Viral Proteins/metabolism
19.
Sci Transl Med ; 3(74): 74ra22, 2011 Mar 16.
Article En | MEDLINE | ID: mdl-21411738

The primary function of B cells, critical components of the adaptive immune response, is to produce antibodies against foreign antigens, as well as to perform isotype class switching, which changes the heavy chain of an antibody so that it can interact with different repertoires of effector cells. CD40 is a member of the tumor necrosis factor superfamily of cell surface receptors that transmits survival signals to B cells. In contrast, in B cell cancers, stimulation of CD40 signaling results in a heterogeneous response in which cells can sometimes undergo cell death in response to treatment, depending on the system studied. We found an association between sensitivity to CD40 stimulation and mutation of the tumor suppressor p53 in a panel of non-Hodgkin's lymphoma cell lines. Consistent with p53's tumor suppressor role, we found that higher levels of intrinsic DNA damage and increased proliferation rates, as well as higher levels of BCL6, a transcriptional repressor proto-oncogene, were associated with sensitivity to CD40 stimulation. In addition, CD40 treatment-resistant cell lines were sensitized to CD40 stimulation after the introduction of DNA-damaging agents. Using gene expression analysis, we also showed that resistant cell lines exhibited a preexisting activated CD40 pathway and that an mRNA expression signature comprising CD40 target genes predicted sensitivity and resistance to CD40-activating agents in cell lines and mouse xenograft models. Finally, the gene signature predicted tumor shrinkage and progression-free survival in patients with diffuse large B cell lymphoma treated with dacetuzumab, a monoclonal antibody with partial CD40 agonist activity. These data show that CD40 pathway activation status may be useful in predicting the antitumor activity of CD40-stimulating therapeutic drugs.


Antibodies, Monoclonal/therapeutic use , CD40 Antigens/immunology , Immunotherapy/methods , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/immunology , Animals , Antibodies, Monoclonal, Humanized , B-Lymphocytes/immunology , CD40 Antigens/genetics , CD40 Ligand/genetics , CD40 Ligand/immunology , Cell Line, Tumor , Gene Expression Profiling , Humans , In Situ Hybridization, Fluorescence , Mice , Microarray Analysis , Proto-Oncogene Mas , Transplantation, Heterologous , Tumor Suppressor Protein p53/immunology
20.
Antiviral Res ; 90(3): 160-3, 2011 Jun.
Article En | MEDLINE | ID: mdl-21443905

We have recently demonstrated that newly synthesized oseltamivir derivatives that contain a substituted triazole ring at the C-5 amino group interact with the 150 cavity found specifically in the group-1 neuraminidase (NA) subtypes of influenza A virus. These compounds exhibited in vitro inhibition activity of a group-1 NA enzyme incorporated in virus-like particles (VLPs). In the current study, we tested these nine triazole-containing carbocycles as well as an amino- and a guanidino-substituted derivative in virus replication inhibitory assays in vitro. None of the triazole-containing carbocycles significantly inhibited influenza A virus replication in MDCK cells with either a virus strain containing a group-1 or a group-2 subtype NA. In contrast, the amino- and guanidino-substituted derivatives clearly inhibited the cytopathic effect or spread of virus infection detected by immunostaining in MDCK monolayers as well as progeny virus release; these compounds were also reported to have shown the highest inhibition of group-1 NA in the context of VLPs. These results, together with the structures of these compounds, suggest that hydrogen-bonding interactions between the polar amino or guanidino functions and complementary groups in the neuraminidase active site (e.g. Asp151, Glu 119) may be essential for strong inhibition of the neuraminidase enzyme and, in turn, the inhibition of influenza A virus replication.


Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Influenza A virus/drug effects , Oseltamivir/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Cell Line , Humans , Influenza A virus/enzymology , Influenza A virus/physiology , Influenza, Human/virology , Kinetics , Molecular Structure , Neuraminidase/antagonists & inhibitors , Oseltamivir/chemistry , Viral Proteins/antagonists & inhibitors
...