Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38805012

RESUMEN

OBJECTIVE: We validated the CREST model, a 5 variable score for stratifying risk of circulatory etiology death (CED) following out of hospital cardiac arrest (OHCA), and compared its discrimination with the SCAI shock classification. BACKGROUND: CED occurs in approximately a third of patients admitted after resuscitated OHCA. There is an urgent need for improved stratification of the OHCA patient on arrival to a cardiac arrest centre to improve patient selection for invasive interventions. METHODS: The CREST model and SCAI shock classification were applied to a dual-centre registry of 723 patients with cardiac etiology OHCA, both with and without ST-elevation myocardial infarction, between May 2012 to December 2020. The primary endpoint was 30-day CED. RESULTS: Of 509 patients included (62.3 years, 75.4% male), 125 patients had CREST=0 (24.5%), 162 were CREST=1 (31.8%), 140 were CREST=2 (27.5%), 75 were CREST=3 (14.7%), 7 were CREST of 4 (1.4%) and no patients were CREST=5. CED was observed in 91 (17.9%) patients at 30 days [STEMI - 51/289 (17.6%); NSTEMI - 40/220 (18.2%)]. For the total population, and both NSTEMI & STEMI subpopulations, increasing CREST score was associated with increasing CED (all p<0.001). CREST score and SCAI classification had similar discrimination for the total population (AUC=0.72/calibration slope=0.95), NSTEMI cohort (AUC=0.75/calibration slope=0.940) and STEMI cohort (AUC=0.69 and calibration slope=0.925). AUC meta-analyses demonstrated no significant differences between the two classifications. CONCLUSIONS: The CREST model and SCAI shock classification have similar prediction for the development of CED after OHCA.

2.
JACC Cardiovasc Interv ; 16(19): 2439-2450, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37609699

RESUMEN

BACKGROUND: The MIRACLE2 score is the only risk score that does not incorporate and can be used for selection of therapies after out-of-hospital cardiac arrest (OHCA). OBJECTIVES: This study sought to compare the discrimination performance of the MIRACLE2 score, downtime, and current randomized controlled trial (RCT) recruitment criteria in predicting poor neurologic outcome after out-of-hospital cardiac arrest (OHCA). METHODS: We used the EUCAR (European Cardiac Arrest Registry), a retrospective cohort from 6 centers (May 2012-September 2022). The primary outcome was poor neurologic outcome on hospital discharge (cerebral performance category 3-5). RESULTS: A total of 1,259 patients (total downtime = 25 minutes; IQR: 15-36 minutes) were included in the study. Poor outcome occurred in 41.8% with downtime <30 minutes and in 79.3% for those with downtime >30 minutes. In a multivariable logistic regression analysis, MIRACLE2 had a stronger association with outcome (OR: 2.23; 95% CI: 1.98-2.51; P < 0.0001) than zero flow (OR: 1.07; 95% CI: 1.01-1.13; P = 0.013), low flow (OR: 1.04; 95% CI: 0.99-1.09; P = 0.054), and total downtime (OR: 0.99; 95% CI: 0.95-1.03; P = 0.52). MIRACLE2 had substantially superior discrimination for the primary endpoint (AUC: 0.877; 95% CI: 0.854-0.897) than zero flow (AUC: 0.610; 95% CI: 0.577-0.642), low flow (AUC: 0.725; 95% CI: 0.695-0.754), and total downtime (AUC: 0.732; 95% CI: 0.701-0.760). For those modeled for exclusion from study recruitment, the positive predictive value of MIRACLE2 ≥5 for poor outcome was significantly higher (0.92) than the CULPRIT-SHOCK (Culprit lesion only PCI Versus Multivessel PCI in Cardiogenic Shock) (0.80), EUROSHOCK (Testing the value of Novel Strategy and Its Cost Efficacy In Order to Improve the Poor Outcomes in Cardiogenic Shock) (0.74) and ECLS-SHOCK (Extra-corporeal life support in Cardiogenic shock) criteria (0.81) (P < 0.001). CONCLUSIONS: The MIRACLE2 score has superior prediction of outcome after OHCA than downtime and higher discrimination of poor outcome than the current RCT recruitment criteria. The potential for the MIRACLE2 score to improve the selection of OHCA patients should be evaluated formally in future RCTs.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco Extrahospitalario , Humanos , Paro Cardíaco Extrahospitalario/diagnóstico , Paro Cardíaco Extrahospitalario/terapia , Resultado del Tratamiento , Choque Cardiogénico , Predicción
3.
Nucleic Acids Res ; 50(D1): D988-D995, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34791404

RESUMEN

Ensembl (https://www.ensembl.org) is unique in its flexible infrastructure for access to genomic data and annotation. It has been designed to efficiently deliver annotation at scale for all eukaryotic life, and it also provides deep comprehensive annotation for key species. Genomes representing a greater diversity of species are increasingly being sequenced. In response, we have focussed our recent efforts on expediting the annotation of new assemblies. Here, we report the release of the greatest annual number of newly annotated genomes in the history of Ensembl via our dedicated Ensembl Rapid Release platform (http://rapid.ensembl.org). We have also developed a new method to generate comparative analyses at scale for these assemblies and, for the first time, we have annotated non-vertebrate eukaryotes. Meanwhile, we continually improve, extend and update the annotation for our high-value reference vertebrate genomes and report the details here. We have a range of specific software tools for specific tasks, such as the Ensembl Variant Effect Predictor (VEP) and the newly developed interface for the Variant Recoder. All Ensembl data, software and tools are freely available for download and are accessible programmatically.


Asunto(s)
Bases de Datos Genéticas , Genoma/genética , Anotación de Secuencia Molecular , Programas Informáticos , Animales , Biología Computacional/clasificación , Humanos
4.
Nucleic Acids Res ; 49(D1): D916-D923, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33270111

RESUMEN

The GENCODE project annotates human and mouse genes and transcripts supported by experimental data with high accuracy, providing a foundational resource that supports genome biology and clinical genomics. GENCODE annotation processes make use of primary data and bioinformatic tools and analysis generated both within the consortium and externally to support the creation of transcript structures and the determination of their function. Here, we present improvements to our annotation infrastructure, bioinformatics tools, and analysis, and the advances they support in the annotation of the human and mouse genomes including: the completion of first pass manual annotation for the mouse reference genome; targeted improvements to the annotation of genes associated with SARS-CoV-2 infection; collaborative projects to achieve convergence across reference annotation databases for the annotation of human and mouse protein-coding genes; and the first GENCODE manually supervised automated annotation of lncRNAs. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Asunto(s)
COVID-19/prevención & control , Biología Computacional/métodos , Bases de Datos Genéticas , Genómica/métodos , Anotación de Secuencia Molecular/métodos , SARS-CoV-2/genética , Animales , COVID-19/epidemiología , COVID-19/virología , Epidemias , Humanos , Internet , Ratones , Seudogenes/genética , ARN Largo no Codificante/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Transcripción Genética/genética
5.
Nucleic Acids Res ; 49(D1): D884-D891, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33137190

RESUMEN

The Ensembl project (https://www.ensembl.org) annotates genomes and disseminates genomic data for vertebrate species. We create detailed and comprehensive annotation of gene structures, regulatory elements and variants, and enable comparative genomics by inferring the evolutionary history of genes and genomes. Our integrated genomic data are made available in a variety of ways, including genome browsers, search interfaces, specialist tools such as the Ensembl Variant Effect Predictor, download files and programmatic interfaces. Here, we present recent Ensembl developments including two new website portals. Ensembl Rapid Release (http://rapid.ensembl.org) is designed to provide core tools and services for genomes as soon as possible and has been deployed to support large biodiversity sequencing projects. Our SARS-CoV-2 genome browser (https://covid-19.ensembl.org) integrates our own annotation with publicly available genomic data from numerous sources to facilitate the use of genomics in the international scientific response to the COVID-19 pandemic. We also report on other updates to our annotation resources, tools and services. All Ensembl data and software are freely available without restriction.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Genómica/métodos , SARS-CoV-2/genética , Vertebrados/genética , Animales , COVID-19/epidemiología , COVID-19/virología , Humanos , Internet , Anotación de Secuencia Molecular/métodos , Pandemias , Vertebrados/clasificación
6.
Nucleic Acids Res ; 48(D1): D682-D688, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31691826

RESUMEN

The Ensembl (https://www.ensembl.org) is a system for generating and distributing genome annotation such as genes, variation, regulation and comparative genomics across the vertebrate subphylum and key model organisms. The Ensembl annotation pipeline is capable of integrating experimental and reference data from multiple providers into a single integrated resource. Here, we present 94 newly annotated and re-annotated genomes, bringing the total number of genomes offered by Ensembl to 227. This represents the single largest expansion of the resource since its inception. We also detail our continued efforts to improve human annotation, developments in our epigenome analysis and display, a new tool for imputing causal genes from genome-wide association studies and visualisation of variation within a 3D protein model. Finally, we present information on our new website. Both software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license) and data updates made available four times a year.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Epigenoma , Anotación de Secuencia Molecular , Algoritmos , Animales , Gráficos por Computador , Bases de Datos de Proteínas , Variación Genética , Estudio de Asociación del Genoma Completo , Genómica , Histonas/metabolismo , Humanos , Imagenología Tridimensional , Internet , Ligandos , Motor de Búsqueda , Programas Informáticos , Especificidad de la Especie , Transcriptoma , Interfaz Usuario-Computador , Navegador Web
7.
Nucleic Acids Res ; 47(D1): D766-D773, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30357393

RESUMEN

The accurate identification and description of the genes in the human and mouse genomes is a fundamental requirement for high quality analysis of data informing both genome biology and clinical genomics. Over the last 15 years, the GENCODE consortium has been producing reference quality gene annotations to provide this foundational resource. The GENCODE consortium includes both experimental and computational biology groups who work together to improve and extend the GENCODE gene annotation. Specifically, we generate primary data, create bioinformatics tools and provide analysis to support the work of expert manual gene annotators and automated gene annotation pipelines. In addition, manual and computational annotation workflows use any and all publicly available data and analysis, along with the research literature to identify and characterise gene loci to the highest standard. GENCODE gene annotations are accessible via the Ensembl and UCSC Genome Browsers, the Ensembl FTP site, Ensembl Biomart, Ensembl Perl and REST APIs as well as https://www.gencodegenes.org.


Asunto(s)
Bases de Datos Genéticas , Genoma Humano/genética , Genómica , Seudogenes/genética , Animales , Biología Computacional , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...