Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Environ Sci Technol ; 58(15): 6781-6792, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38560895

Predicting the hotspots of antimicrobial resistance (AMR) in aquatics is crucial for managing associated risks. We developed an integrated modeling framework toward predicting the spatiotemporal abundance of antibiotics, indicator bacteria, and their corresponding antibiotic-resistant bacteria (ARB), as well as assessing the potential AMR risks to the aquatic ecosystem in a tropical reservoir. Our focus was on two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), and on Escherichia coli (E. coli) and its variant resistant to sulfamethoxazole-trimethoprim (EC_SXT). We validated the predictive model using withheld data, with all Nash-Sutcliffe efficiency (NSE) values above 0.79, absolute relative difference (ARD) less than 25%, and coefficient of determination (R2) greater than 0.800 for the modeled targets. Predictions indicated concentrations of 1-15 ng/L for SMX, 0.5-5 ng/L for TMP, and 0 to 5 (log10 MPN/100 mL) for E. coli and -1.1 to 3.5 (log10 CFU/100 mL) for EC_SXT. Risk assessment suggested that the predicted TMP could pose a higher risk of AMR development than SMX, but SMX could possess a higher ecological risk. The study lays down a hybrid modeling framework for integrating a statistic model with a process-based model to predict AMR in a holistic manner, thus facilitating the development of a better risk management framework.


Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Ecosystem , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Trimethoprim, Sulfamethoxazole Drug Combination , Drug Resistance, Microbial , Bacteria
2.
J Hazard Mater ; 465: 133483, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38232547

Quaternary ammonium compounds (QACs) are commonly used in many products, such as disinfectants, detergents and personal care products. However, their widespread use has led to their ubiquitous presence in the environment, posing a potential risk to human and environmental health. Several methods, including direct and indirect photodegradation, have been explored to remove QACs such as benzylalkyldimethyl ammonium compounds (BACs) and alkyltrimethyl ammonium compounds (ATMACs) from the environment. Hence, in this research, a systematic review of the literature was conducted using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) method to understand the fate of these QACs during direct and indirect photodegradation in UV/H2O2, UV/PS, UV/PS/Cu2+, UV/chlorine, VUV/UV/chlorine, O3/UV and UV/O3/TiO2 systems which produce highly reactive radicals that rapidly react with the QACs, leading to their degradation. As a result of photodegradation, several transformation products (TPs) of QACs are formed, which can pose a greater risk to the environment and human health than the parent QACs. Only limited research in this area has been conducted with fewer QACs. Hence, quantum mechanical calculations such as density functional theory (DFT)-based computational calculations using Gaussian09 software package were used here to explain better the photo-resistant nature of a specific type of QACs, such as BACs C12-18 and ATMACs C12, C14, C18, and their transformation pathways, providing insights into active sites participating in the phototransformation. Recognizing that different advanced oxidation processes (AOPs) come with pros and cons in the elimination of QACs, this review also highlighted the importance of implementing each AOP concerning the formation of toxic transformation products and electrical energy per order (EEO), especially when QACs coexist with other emerging contaminants (ECs).

3.
J Environ Manage ; 347: 119126, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37778063

Pollution source identification is vital in water safety management. An integrated simulation-optimization modelling framework comprising a process-based hydrodynamic water quality model, artificial neural network surrogate model and particle swarm optimization (PSO) was proposed to achieve rapid, accurate and reliable pollution source identification. In this study, the hydrodynamics and water quality processes in a straight lab-based flume were simulated to test pollution source identification under steady flow conditions. Additionally, the pollution source identification in the unsteady flow conditions was examined using a real-life estuary, specifically the Yangtze River estuary. First, we developed two process-based models to simulate hydrodynamics and water quality in the flume and estuary. Then, the data generated from the process-based models were used to develop surrogate models. Three typical artificial neural networks (ANNs) algorithms: backpropagation (BP), radial basis function (RBF) and general regression neural networks (GRNN) were selected to develop surrogates for process-based models (PBMs), and they were coupled with PSO algorithm to achieve the hybrid modelling framework for pollution source identification. Our results showed that hybrid PBM-ANNs-PSO models could be applied to identify the pollution source and quantify release intensity in spatial distribution when the discharge type was assumed as the point source with a continuous release. Multiple-performance criteria metrics, in terms of the coefficient of determination, root-mean-square error, mean absolute error, evaluated the model performance as "Excellent prediction". The BP-PSO models consistently appear to be the top-performing source identification model within the developed models, with most cases of relative error (RE) values lower than 5%. The new insights from the hybrid modelling framework would provide useful information for the local government agency to make reasonable decisions regarding pollution source identification issues.


Algorithms , Neural Networks, Computer , Computer Simulation , Water Quality , Rivers
4.
Sci Total Environ ; 887: 163781, 2023 Aug 20.
Article En | MEDLINE | ID: mdl-37149193

During the pandemic of COVID-19, the amounts of quaternary ammonium compounds (QACs) used to inactivate the virus in public facilities, hospitals and households increased, which raised concerns about the evolution and transmission of antimicrobial resistance (AMR). Although QACs may play an important role in the propagation of antibiotic resistance gene (ARGs), the potential contribution and mechanism remains unclear. Here, the results showed that benzyl dodecyl dimethyl ammonium chloride (DDBAC) and didecyl dimethyl ammonium chloride (DDAC) significantly promoted plasmid RP4-mediated ARGs transfer within and across genera at environmental relevant concentrations (0.0004-0.4 mg/L). Low concentrations of QACs did not contribute to the permeability of the cell plasma membrane, but significantly increased the permeability of the cell outer membrane due to the decrease in content of lipopolysaccharides. QACs altered the composition and content of extracellular polymeric substances (EPS) and were positively correlated with the conjugation frequency. Furthermore, transcriptional expression levels of genes encode for mating pairing formation (trbB), DNA replication and translocation (trfA), and global regulators (korA, korB, trbA) are regulated by QACs. And we demonstrate for the first time that QACs decreased the concentration of extracellular AI-2 signals, which was verified to be involved in regulating conjugative transfer genes (trbB, trfA). Collectively, our findings underscore the risk of increased disinfectant concentrations of QACs on the ARGs transfer and provide new mechanisms of plasmid conjugation.


COVID-19 , Quaternary Ammonium Compounds , Humans , Ammonium Chloride , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Plasmids
5.
J Environ Manage ; 332: 117421, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-36739776

Turbulence generated within the vegetated confluence system is important for water quality and river management. In this study, we conducted a series of experiments to explore the extent to which emergent rigid vegetation in the confluence channel influences hydrodynamic characteristics and contaminant transport. First, a series of tests with increasing discharge ratios (from 0.35, 0.5, and 1) was conducted to quantify the effects of the discharge ratio on hydrodynamic conditions within the vegetated confluence. Then, tests with different discharge ratios were also set up to explore how contaminants released locations and modes (line and point source) influence the transport and mixing of contaminants. The results showed that increasing the discharge ratio induced larger momentum in the confluence area. The increase in discharge ratio rendered the circulation stronger, and its position came earlier in the non-vegetative area. In addition, the dimensionless turbulent kinetic energy peaked near the interface of the non/vegetated zone. With the increase in the discharge ratio, the dimensionless turbulent kinetic energy was found to be smaller. In the contaminants transport tests, the results revealed larger discharge ratio could speed up contaminants transport and mixing. The applications from this study would be helpful to pollutant transport management in natural confluences.


Environmental Pollutants , Water Quality , Rivers , Hydrodynamics
7.
J Hazard Mater ; 446: 130690, 2023 03 15.
Article En | MEDLINE | ID: mdl-36603423

In this study, we report the implementation of a comprehensive wastewater surveillance testing program at a university campus in Singapore to identify Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infected individuals and the usage of pharmaceuticals and personal care products (PPCPs) as well as other emerging contaminants (ECs). This unique co-monitoring program simultaneously measured SARS-CoV-2 with chemical markers/contaminants as the COVID-19 situation evolved from pandemic to endemic stages, following a nationwide mass vaccination drive. SARS-CoV-2 RNA concentrations in wastewater from campus dormitories were measured using real-time reverse transcription-polymerase chain reaction (RT-qPCR) and corroborated with the number of symptomatic COVID-19 cases confirmed with the antigen rapid test (ART). Consistent results were observed where the concentrations of SARS-CoV-2 RNA detected in wastewater increased proportionately with the number of COVID-19 infected individuals residing on campus. Similarly, a wide range of ECs, including disinfectants and antibiotics, were detected through sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) techniques to establish PPCPs consumption patterns during various stages of the COVID-19 pandemic in Singapore. Statistical correlation of SARS-CoV-2 RNA was observed with few ECs belonging to disinfectants, PCPs and antibiotics. A high concentration of disinfectants and subsequent positive correlation with the number of reported cases on the university campus indicates that disinfectants could serve as a chemical marker during such unprecedented times.


COVID-19 , Disinfectants , Humans , SARS-CoV-2 , COVID-19/epidemiology , Wastewater , Pandemics , Chromatography, Liquid , RNA, Viral , Wastewater-Based Epidemiological Monitoring , Tandem Mass Spectrometry , Anti-Bacterial Agents
8.
Environ Res ; 216(Pt 3): 114659, 2023 01 01.
Article En | MEDLINE | ID: mdl-36328221

Photochemical transformation of pharmaceuticals plays an important role in their natural attenuation, especially in lagoon-based wastewater treatment plants and surface waters receiving substantial sunlight. In this study, the photodegradation of five important pharmaceuticals was studied in samples obtained from a wastewater treatment plant and surface water sources. Batch photodegradation studies for a mixture of pharmaceuticals (diclofenac, sulfamethoxazole, acetaminophen, carbamazepine and gemfibrozil) were carried out in a photochemical reactor. Multiple aliquots of samples removed from the reactor during the experiment were analyzed through high-performance liquid chromatography (HPLC) coupled to a photodiode array (PDA) detector. Intermediate products formed due to photodegradation were identified by ultra-high-performance liquid chromatography coupled with a time-of-flight mass spectrometry (UHPLC-MS/MS). Diclofenac and sulfamethoxazole were found to undergo direct photodegradation due to strong light absorption, whereas the indirect route of photosensitized degradation in the presence of dissolved organic matter (DOM) and model humic acid was significant for acetaminophen, carbamazepine, and gemfibrozil. The reactive radicals such as hydroxyl (OH•), singlet oxygen (1O2) and excited states of DOM (*DOM) were predominantly responsible for the indirect photodegradation of acetaminophen, gemfibrozil and carbamazepine, respectively. Computational analysis revealed that chlorine and carbon atoms belonging to the benzene ring of diclofenac were more reactive to radical attack. Sulfamethoxazole photodegradation occurred through oxidation of the NH2 group. Acetaminophen was more susceptible to electrophilic radical attack at the O-11, and N-7 positions and carbon atoms ortho to the phenolic oxygen and the amine group. The double bonds between C-7, C-8 and C-13 were the most reactive sites for carbamazepine that participated in the phototransformation pathway. Organic matter plays a critical role in the photodegradation of emerging contaminants. The coupling of DFT calculations with UHPLC-MS/MS analysis provided insights on key functional groups participating in the phototransformation pathway. Thus, both parent pharmaceuticals and the photodegradation intermediates should be considered during wastewater treatment.


Wastewater , Water Pollutants, Chemical , Photolysis , Wastewater/chemistry , Gemfibrozil/analysis , Tandem Mass Spectrometry , Diclofenac , Acetaminophen , Water Pollutants, Chemical/analysis , Sulfamethoxazole , Carbon , Carbamazepine/analysis , Pharmaceutical Preparations
9.
J Hazard Mater ; 445: 130393, 2023 03 05.
Article En | MEDLINE | ID: mdl-36455328

Amplified hygiene and precautionary measures are of utmost importance to control the spread of COVID-19 and future infection; however, these changes in practice are projected to trigger a rise in the purchase, utilisation and hence, discharge of many disinfectants into the environment. While alcohol-based, hydrogen peroxide-based, and chlorine-based compounds have been used widely, quaternary ammonium compounds (QACs) based disinfectants are of significant concern due to their overuse during this pandemic. This review presents the classification of disinfectants and their mechanism of action, focusing on QACs. Most importantly, the occurrence, fate, toxicity and antimicrobial resistance due to QACs are covered in this paper. Here we collated evidence from multiple studies and found rising trends of concern, including an increase in the mass load of QACs at a wastewater treatment plant (WWTP) by 331% compared to before the COVID-19 pandemic, as well as an increases in the concentration of 62% in residential dust, resulting in high concentrations of QACs in human blood and breast milk and suggesting that these could be potential sources of persistent QACs in infants. In addition to increased toxicity to human and aquatic life, increased use of QACs and accelerated use of antibiotics and antimicrobials during the COVID-19 pandemic could multiply the threat to antimicrobial resistance.


COVID-19 , Disinfectants , Humans , Quaternary Ammonium Compounds/toxicity , Anti-Bacterial Agents/toxicity , Pandemics , Drug Resistance, Bacterial , Disinfectants/toxicity
10.
Curr Opin Environ Sci Health ; 28: 100373, 2022 Aug.
Article En | MEDLINE | ID: mdl-35669052

The coronaviruses are the largest known RNA viruses of which SASR-CoV-2 has been spreading continuously due to its repeated mutation triggered by several environmental factors. Multiple human interventions and lessons learned from the SARS 2002 outbreak helped reduce its spread considerably, and thus, the virus was contained but the emerging mutations burdened the medical facility leading to many deaths in the world. As per the world health organization (WHO) droplet mode transmission is the most common mode of SASR-CoV-2 transmission to which environmental factors including temperature and humidity play a major role. This article highlights the responsibility of environmental causes that would affect the distribution and fate of the virus. Recent development in the risk assessment models is also covered in this article.

11.
Curr Opin Environ Sci Health ; 27: 100358, 2022 Jun.
Article En | MEDLINE | ID: mdl-35369608

Structural and genetic differences among various viruses play a significant factor in host infectivity and vulnerability to environmental stressors. Zoonoses of viruses require several recombinations and mutations in their genetic material and among several viruses allowing them to switch hosts and infect new species. Additionally, the host genetics play a significant role in successful viral transmission among various hosts. For example, human immunodeficiency virus (HIV), Ebola virus and influenza viruses. In efficient zoonotic events, selective stresses in the host milieu-interieur are critical during viral infection of the first human host. The genetic rearrangement of the virus and the selective environmental pressure of the host immune system dominate the emergence of new viral disease outbreaks.

12.
Water Res ; 217: 118418, 2022 Jun 15.
Article En | MEDLINE | ID: mdl-35417822

The occurrence of emerging contaminants (ECs), such as pharmaceuticals and personal care products (PPCPs), perfluoroalkyl and polyfluoroalkyl substances (PFASs) and endocrine-disrupting chemicals (EDCs) in aquatic environments represent a major threat to water resources due to their potential risks to the ecosystem and humans even at trace levels. Mathematical modelling can be a useful tool as a comprehensive approach to study their fate and transport in natural waters. However, modelling studies of the occurrence, fate and transport of ECs in aquatic environments have generally received far less attention than the more widespread field and laboratory studies. In this study, we reviewed the current status of modelling ECs based on selected representative ECs, including their sources, fate and various mechanisms as well as their interactions with the surrounding environments in aquatic ecosystems, and explore future development and perspectives in this area. Most importantly, the principles, mathematical derivations, ongoing development and applications of various ECs models in different geographical regions are critically reviewed and discussed. The recommendations for improving data quality, monitoring planning, model development and applications were also suggested. The outcomes of this review can lay down a future framework in developing a comprehensive ECs modelling approach to help researchers and policymakers effectively manage water resources impacted by rising levels of ECs.


Cosmetics , Endocrine Disruptors , Water Pollutants, Chemical , Ecosystem , Endocrine Disruptors/analysis , Environmental Monitoring , Humans , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
13.
Chem Eng J ; 441: 135936, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35345777

The global data on the temporal tracking of the COVID-19 through wastewater surveillance needs to be comparatively evaluated to generate a proper and precise understanding of the robustness, advantages, and sensitivity of the wastewater-based epidemiological (WBE) approach. We reviewed the current state of knowledge based on several scientific articles pertaining to temporal variations in COVID-19 cases captured via viral RNA predictions in wastewater. This paper primarily focuses on analyzing the WBE-based temporal variation reported globally to check if the reported early warning lead-time generated through environmental surveillance is pragmatic or latent. We have compiled the geographical variations reported as lead time in various WBE reports to strike a precise correlation between COVID-19 cases and genome copies detected through wastewater surveillance, with respect to the sampling dates, separately for WASH and non-WASH countries. We highlighted sampling methods, climatic and weather conditions that significantly affected the concentration of viral SARS-CoV-2 RNA detected in wastewater, and thus the lead time reported from the various climatic zones with diverse WASH situations were different. Our major findings are: i) WBE reports around the world are not comparable, especially in terms of gene copies detected, lag-time gained between monitored RNA peak and outbreak/peak of reported case, as well as per capita RNA concentrations; ii) Varying sanitation facility and climatic conditions that impact virus degradation rate are two major interfering features limiting the comparability of WBE results, and iii) WBE is better applicable to WASH countries having well-connected sewerage system.

14.
Chemosphere ; 282: 131151, 2021 Nov.
Article En | MEDLINE | ID: mdl-34470176

The occurrence of microplastics in the aquatic environment has become a growing concern globally. Microplastics pose a hazard to the ecological system, and their presence, particularly in the water, has an adverse impact on human health and the ecosystem. Microplastics are released into the environment directly from everyday used plastic items, degradation of plastics, industries, and wastewater treatment plants. Once these contaminants enter the water, aquatic life feeds on them, and microplastics enter the food chain and cause severe health hazards. An assessment of microplastics' ecological risks is essential; however, it is challenging in the present scenario due to limited information available. To fill these knowledge gaps, this paper comprehensively reviews the sources and transport of microplastics in the water environment and their environmental and health effects, global policy frameworks, analytical techniques for microplastic detection, and control strategies to prevent microplastics release in the aquatic environment.


Microplastics , Water Pollutants, Chemical , Aquatic Organisms , Ecosystem , Environmental Monitoring , Humans , Plastics , Water Pollutants, Chemical/analysis
15.
J Environ Manage ; 293: 112947, 2021 Sep 01.
Article En | MEDLINE | ID: mdl-34289594

Quorum sensing (QS), a microbial communication mechanism modulated by acyl homoserine lactone (AHL) molecules impacts biofilm formation in bioreactors. This study investigated the effects of temperature and immigration on AHL levels and biofouling in anaerobic membrane bioreactors. The hypothesis was that the immigrant microbial community would increase the AHL-mediated QS, thus stimulating biofouling and that low temperatures would exacerbate this. We observed that presence of immigrants, especially when exposed to low temperatures indeed increased AHL concentrations and fouling in the biofilms on the membranes. At low temperature, the concentrations of the main AHLs observed, N-dodecanoyl-L-homoserine lactone and N-decanoyl-L-homoserine lactone, were significantly higher in the biofilms than in the sludge and correlated significantly with the abundance of immigrant bacteria. Apparently low temperature, immigration and denser community structure in the biofilm stressed the communities, triggering AHL production and excretion. These insights into the social behaviour of reactor communities responding to low temperature and influx of immigrants have implications for biofouling control in bioreactors.


Emigration and Immigration , Quorum Sensing , Anaerobiosis , Biofilms , Bioreactors , Temperature
16.
J Hazard Mater ; 413: 125453, 2021 07 05.
Article En | MEDLINE | ID: mdl-33930968

In the present study, wastewater samples acquired from five wastewater treatment plants (WWTPs), located in western India were characterized using fluorescence spectroscopy, and resin-based fractionation was conducted to fractionate DOM into hydrophobic and hydrophilic base, acid, and neutral fractions. Among several fractions, the hydrophilic acid (HIA) and hydrophilic neutral (HIN) fractions were present in higher abundance (more than 50% of DOC) compared to the hydrophilic base (HIB) fraction in both influent and effluent wastewater stream obtained from WWTPs. Tryptophan-like and tyrosine-like substances were also abundant in the influent and effluent stream of WWTPs. Further, LC-MS/MS analysis could identify 235 and 288 DOM proteins in the influent and effluent stream of WWTP-1, respectively. These proteins revealed varying percentage of tryptophan and tyrosine residues. The tryptophan residues primarily contributed to protein-like fluorescence in wastewater. The proteins were further classified based on their role in biological processes, location in the cell, and molecular function. Among several proteins, Alzheimer's and Huntington disease biomarkers were identified at WWTP-1. Their presence in the surface water can serve as an early warning system for wastewater-based epidemiology.


Wastewater , Water Pollutants, Chemical , Chromatography, Liquid , Humic Substances/analysis , India , Seasons , Spectrometry, Fluorescence , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis
17.
Environ Pollut ; 273: 116515, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-33493756

Sludge generated at sewage treatment plants is of environmental concern due to the voluminous production and the presence of a high concentration of emerging contaminants (ECs). This review discusses the fate of ECs in sewage sludge treatment with an emphasis on fundamental mechanisms driving the degradation of compounds based on chemical properties of the contaminant and process operating conditions. The removal of ECs in sewage sludge through various treatment processes of sludge stabilization, such as anaerobic digestion (AD), composting, and pre-treatment methods (thermal, sonication, and oxidation) followed by AD, are discussed. Several transformation mechanisms and remediation strategies for the removal of ECs in sludge are summarized. The study concludes that pH, sludge type, and the types of functional groups are the key factors affecting the sorption of ECs to sludge. During conventional waste stabilization processes such as composting, the degradation of ECs depends on the type of feedstock (TOC, N, P, C/N, C/P) and the initial concentration of the contaminant. In AD, the degree of degradation depends on the hydrophilicity of the compound. The estrogenicity of the sludge may sometimes increase due to the conversion to estrogenic compounds. The pre-treatment techniques can increase the partitioning of ECs in the soluble fraction resulting in enhanced biodegradation up to 10-60%. However, the formation of by-products and loss of OH· to scavenging under high organic content during advanced oxidation processes can make the process uneconomical and require further research.

18.
Anal Chem ; 93(4): 2299-2308, 2021 02 02.
Article En | MEDLINE | ID: mdl-33411532

ß-Lactam antibiotics such as penicillins and cephalosporins are extensively used for human infection therapy. Consistent unintended exposure to these antibiotics via food and water is known to promote antibiotic-resistant bacterial pathogenesis with high morbidity and mortality in humans. An optical enzymatic biosensor for rapid and point-of-use detection of these antibiotics in food and water has been developed and tested. Enzymatic hydrolysis of ß-lactams, on the electroactive polyaniline nanofibers, altered the polymeric backbone of the nanofibers, from emeraldine base form to emeraldine salt, which was measured as an increase in evanescent wave absorbance at 435 nm. The sensors were calibrated by spiking antibiotic-free milk with ceftazidime (as a model ß-lactam analyte) in a linear range of 0.36-3600 nM (R2 = 0.98). The calibration was further validated for packaged milk, local cow milk, and buffalo milk. A similar calibration was devised for chicken meat samples in a linear range of 9-1800 nM (R2 = 0.982) and tap water in a linear range of 0.18-180 nM (R2 = 0.99). Interestingly, it was possible to use the same calibration for the determination of other ß-lactam antibiotics (ampicillin, amoxicillin, and cefotaxime), which reflects the usefulness of the sensor for wide-scale deployment. The sensor performance was validated with a wastewater sample, from a wastewater treatment plant (WWTP), qualitatively analyzed by high-resolution liquid chromatography coupled with mass spectroscopy for detection of ß-lactams. The sensor scheme developed and tested is of grassroot relevance as a quick solution for measurement of ß-lactam residues in food and environment.


Aniline Compounds/chemistry , Anti-Bacterial Agents/chemistry , Drug Residues/chemistry , Food Contamination , beta-Lactams/chemistry , Animals , Chickens , Environmental Monitoring/methods , Environmental Pollutants/chemistry , Hydrolysis , Meat/analysis , Milk/chemistry , Molecular Structure , Nanostructures , Optical Fibers , Wastewater/chemistry
19.
Sci Total Environ ; 765: 142746, 2021 Apr 15.
Article En | MEDLINE | ID: mdl-33092831

The contagious SARS-CoV-2 virus, responsible for COVID-19 disease, has infected over 27 million people across the globe within a few months. While literature on SARS-CoV-2 indicates that its transmission may occur predominantly via aerosolization of virus-laden droplets, the possibility of alternate routes of transmission and/or reinfection via the environment requires considerable scientific attention. This review aims to collate information on possible transmission routes of this virus, to ascertain its fate in the environment. Concomitant with the presence of SARS-CoV-2 viral RNA in faeces and saliva of infected patients, studies also indicated its occurrence in raw wastewater, primary sludge and river water. Therefore sewerage system could be a possible route of virus outbreak, a possible tool to assess viral community spread and future surveillance technique. Hence, this review looked into detection, occurrence and fate of SARS-CoV-2 during primary, secondary, and tertiary wastewater and water treatment processes based on published literature on SARS-CoV and other enveloped viruses. The review also highlights the need for focused research on occurrence and fate of SARS-CoV-2 in various environmental matrices. Utilization of this information in environmental transmission models developed for other enveloped and enteric viruses can facilitate risk assessment studies. Preliminary research efforts with SARS-CoV-2 and established scientific reports on other coronaviruses indicate that the threat of virus transmission from the aquatic environment may be currently non-existent. However, the presence of viral RNA in wastewater provides an early warning that highlights the need for effective sewage treatment to prevent a future outbreak of SARS-CoV-2.


COVID-19 , Water Purification , Attention , Humans , Pandemics , SARS-CoV-2 , Wastewater
20.
J Hazard Mater ; 405: 124043, 2021 03 05.
Article En | MEDLINE | ID: mdl-33268203

In this review, we present the environmental perspectives of the viruses and antiviral drugs related to SARS-CoV-2. The present review paper discusses occurrence, fate, transport, susceptibility, and inactivation mechanisms of viruses in the environment as well as environmental occurrence and fate of antiviral drugs, and prospects (prevalence and occurrence) of antiviral drug resistance (both antiviral drug resistant viruses and antiviral resistance in the human). During winter, the number of viral disease cases and environmental occurrence of antiviral drug surge due to various biotic and abiotic factors such as transmission pathways, human behaviour, susceptibility, and immunity as well as cold climatic conditions. Adsorption and persistence critically determine the fate and transport of viruses in the environment. Inactivation and disinfection of virus include UV, alcohol, and other chemical-base methods but the susceptibility of virus against these methods varies. Wastewater treatment plants (WWTPs) are major reserviors of antiviral drugs and their metabolites and transformation products. Ecotoxicity of antiviral drug residues against aquatic organisms have been reported, however more threatening is the development of antiviral resistance, both in humans and in wild animal reservoirs. In particular, emergence of antiviral drug-resistant viruses via exposure of wild animals to high loads of antiviral residues during the current pandemic needs further evaluation.


Antiviral Agents , Drug Resistance, Viral/drug effects , Environmental Microbiology , Environmental Pollutants , SARS-CoV-2 , Virus Inactivation , Adsorption , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , Aquatic Organisms/drug effects , COVID-19/epidemiology , COVID-19/etiology , Ecotoxicology , Environmental Pollutants/chemistry , Environmental Pollutants/therapeutic use , Environmental Pollutants/toxicity , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Seasons , Virus Inactivation/drug effects , Virus Inactivation/radiation effects , Water Purification , COVID-19 Drug Treatment
...