Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Bio Protoc ; 13(12): e4698, 2023 Jun 20.
Article En | MEDLINE | ID: mdl-37397797

Expansion microscopy (ExM) is a powerful technique to overcome the diffraction limit of light microscopy that can be applied in both tissues and cells. In ExM, samples are embedded in a swellable polymer gel to physically expand the sample and isotropically increase resolution in x, y, and z. By systematic exploration of the ExM recipe space, we developed a novel ExM method termed Ten-fold Robust Expansion Microscopy (TREx) that, as the original ExM method, requires no specialized equipment or procedures. TREx enables ten-fold expansion of both thick mouse brain tissue sections and cultured human cells, can be handled easily, and enables high-resolution subcellular imaging with a single expansion step. Furthermore, TREx can provide ultrastructural context to subcellular protein localization by combining antibody-stained samples with off-the-shelf small molecule stains for both total protein and membranes.

2.
Nat Methods ; 20(6): 925-934, 2023 Jun.
Article En | MEDLINE | ID: mdl-37142767

The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.


Glutamic Acid , Synaptic Transmission , Mice , Animals , Glutamic Acid/metabolism , Kinetics , Neurons/physiology , Synapses/physiology
4.
Int J Mol Sci ; 23(20)2022 Oct 12.
Article En | MEDLINE | ID: mdl-36293002

The mechanisms involved in the interaction of PrP 106-126, a peptide corresponding to the prion protein amyloidogenic region, with the blood-brain barrier (BBB) were studied. PrP 106-126 treatment that was previously shown to impair BBB function, reduced cAMP levels in cultured brain endothelial cells, increased nitric oxide (NO) levels, and changed the activation mode of the small GTPases Rac1 (inactivation) and RhoA (activation). The latter are well established regulators of endothelial barrier properties that act via cytoskeletal elements. Indeed, liquid chromatography-mass spectrometry (LC-MS)-based proteomic profiling study revealed extensive changes in expression of cytoskeleton-related proteins. These results shed light on the nature of the interaction between the prion peptide PrP 106-126 and the BBB and emphasize the importance of the cytoskeleton in endothelium response to prion- induced stress.


Monomeric GTP-Binding Proteins , Prions , Blood-Brain Barrier/metabolism , Prions/metabolism , Endothelial Cells/metabolism , Prion Proteins/metabolism , Nitric Oxide/metabolism , Proteomics , Endothelium/metabolism , Cytoskeleton/metabolism , Monomeric GTP-Binding Proteins/metabolism , Peptides/pharmacology , Peptides/metabolism
5.
Elife ; 112022 02 18.
Article En | MEDLINE | ID: mdl-35179128

Expansion microscopy (ExM) is a powerful technique to overcome the diffraction limit of light microscopy that can be applied in both tissues and cells. In ExM, samples are embedded in a swellable polymer gel to physically expand the sample and isotropically increase resolution in x, y, and z. The maximum resolution increase is limited by the expansion factor of the gel, which is four-fold for the original ExM protocol. Variations on the original ExM method have been reported that allow for greater expansion factors but at the cost of ease of adoption or versatility. Here, we systematically explore the ExM recipe space and present a novel method termed Ten-fold Robust Expansion Microscopy (TREx) that, like the original ExM method, requires no specialized equipment or procedures. We demonstrate that TREx gels expand 10-fold, can be handled easily, and can be applied to both thick mouse brain tissue sections and cultured human cells enabling high-resolution subcellular imaging with a single expansion step. Furthermore, we show that TREx can provide ultrastructural context to subcellular protein localization by combining antibody-stained samples with off-the-shelf small-molecule stains for both total protein and membranes.


Brain/anatomy & histology , Cells, Cultured/cytology , Microscopy/methods , Animals , Humans , Mice , Microscopy/instrumentation
6.
Life Sci Alliance ; 4(1)2021 01.
Article En | MEDLINE | ID: mdl-33277355

Tertiary lymphoid structures (TLS) are organized aggregates of B and T cells formed ectopically during different stages of life in response to inflammation, infection, or cancer. Here, we describe formation of structures reminiscent of TLS in the spinal cord meninges under several central nervous system (CNS) pathologies. After acute spinal cord injury, B and T lymphocytes locally aggregate within the meninges to form TLS-like structures, and continue to accumulate during the late phase of the response to the injury, with a negative impact on subsequent pathological conditions, such as experimental autoimmune encephalomyelitis. Using a chronic model of spinal cord pathology, the mSOD1 mouse model of amyotrophic lateral sclerosis, we further showed by single-cell RNA-sequencing that a meningeal lymphocyte niche forms, with a unique organization and activation state, including accumulation of pre-B cells in the spinal cord meninges. Such a response was not found in the CNS-draining cervical lymph nodes. The present findings suggest that a special immune response develops in the meninges during various neurological pathologies in the CNS, a possible reflection of its immune privileged nature.


Amyotrophic Lateral Sclerosis/immunology , B-Lymphocytes/immunology , Immunity , Meninges/immunology , Spinal Cord Injuries/immunology , T-Lymphocytes/immunology , Tertiary Lymphoid Structures/immunology , Acute Disease , Animals , Chronic Disease , Disease Models, Animal , Inflammation/immunology , Lymph Nodes/immunology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neck , Thoracic Vertebrae/injuries
7.
Nat Methods ; 17(8): 815-821, 2020 08.
Article En | MEDLINE | ID: mdl-32719532

Expanding the palette of fluorescent dyes is vital to push the frontier of biological imaging. Although rhodamine dyes remain the premier type of small-molecule fluorophore owing to their bioavailability and brightness, variants excited with far-red or near-infrared light suffer from poor performance due to their propensity to adopt a lipophilic, nonfluorescent form. We report a framework for rationalizing rhodamine behavior in biological environments and a general chemical modification for rhodamines that optimizes long-wavelength variants and enables facile functionalization with different chemical groups. This strategy yields red-shifted 'Janelia Fluor' (JF) dyes useful for biological imaging experiments in cells and in vivo.


Fluorescent Dyes/chemistry , Rhodamines/chemistry , Cell Line, Tumor , Humans , Infrared Rays , Microscopy, Fluorescence/methods , Molecular Structure
8.
Elife ; 82019 10 30.
Article En | MEDLINE | ID: mdl-31663507

The active properties of dendrites can support local nonlinear operations, but previous imaging and electrophysiological measurements have produced conflicting views regarding the prevalence and selectivity of local nonlinearities in vivo. We imaged calcium signals in pyramidal cell dendrites in the motor cortex of mice performing a tactile decision task. A custom microscope allowed us to image the soma and up to 300 µm of contiguous dendrite at 15 Hz, while resolving individual spines. New analysis methods were used to estimate the frequency and spatial scales of activity in dendritic branches and spines. The majority of dendritic calcium transients were coincident with global events. However, task-associated calcium signals in dendrites and spines were compartmentalized by dendritic branching and clustered within branches over approximately 10 µm. Diverse behavior-related signals were intermingled and distributed throughout the dendritic arbor, potentially supporting a large learning capacity in individual neurons.


Decision Making , Motor Cortex/physiology , Nerve Net/physiology , Pyramidal Cells/physiology , Animals , Calcium Signaling , Mice , Microscopy , Touch Perception , Vibrissae/physiology
9.
Nat Methods ; 16(7): 649-657, 2019 07.
Article En | MEDLINE | ID: mdl-31209382

Calcium imaging with genetically encoded calcium indicators (GECIs) is routinely used to measure neural activity in intact nervous systems. GECIs are frequently used in one of two different modes: to track activity in large populations of neuronal cell bodies, or to follow dynamics in subcellular compartments such as axons, dendrites and individual synaptic compartments. Despite major advances, calcium imaging is still limited by the biophysical properties of existing GECIs, including affinity, signal-to-noise ratio, rise and decay kinetics and dynamic range. Using structure-guided mutagenesis and neuron-based screening, we optimized the green fluorescent protein-based GECI GCaMP6 for different modes of in vivo imaging. The resulting jGCaMP7 sensors provide improved detection of individual spikes (jGCaMP7s,f), imaging in neurites and neuropil (jGCaMP7b), and may allow tracking larger populations of neurons using two-photon (jGCaMP7s,f) or wide-field (jGCaMP7c) imaging.


Calcium/metabolism , Neurons/metabolism , Animals , Cells, Cultured , Drosophila , Female , Green Fluorescent Proteins , Mice , Neuromuscular Junction/diagnostic imaging , Rats , Visual Cortex/metabolism
10.
Nat Neurosci ; 20(4): 620-628, 2017 Apr.
Article En | MEDLINE | ID: mdl-28250408

Neurons and neural networks often extend hundreds of micrometers in three dimensions. Capturing the calcium transients associated with their activity requires volume imaging methods with subsecond temporal resolution. Such speed is a challenge for conventional two-photon laser-scanning microscopy, because it depends on serial focal scanning in 3D and indicators with limited brightness. Here we present an optical module that is easily integrated into standard two-photon laser-scanning microscopes to generate an axially elongated Bessel focus, which when scanned in 2D turns frame rate into volume rate. We demonstrated the power of this approach in enabling discoveries for neurobiology by imaging the calcium dynamics of volumes of neurons and synapses in fruit flies, zebrafish larvae, mice and ferrets in vivo. Calcium signals in objects as small as dendritic spines could be resolved at video rates, provided that the samples were sparsely labeled to limit overlap in their axially projected images.


Brain/physiology , Imaging, Three-Dimensional/methods , Synapses/physiology , Animals , Axons , Calcium/metabolism , Dendrites/physiology , Drosophila melanogaster , Mice , Microscopy, Confocal , Neural Inhibition/physiology , Neurons/physiology , Photons , Zebrafish
11.
Nat Commun ; 7: 12740, 2016 09 12.
Article En | MEDLINE | ID: mdl-27615520

Thalamic inputs of cells in sensory cortices are outnumbered by local connections. Thus, it was suggested that robust sensory response in layer 4 emerges due to synchronized thalamic activity. To investigate the role of both inputs in the generation of correlated cortical activities, we isolated the thalamic excitatory inputs of cortical cells by optogenetically silencing cortical firing. In anaesthetized mice, we measured the correlation between isolated thalamic synaptic inputs of simultaneously patched nearby layer 4 cells of the barrel cortex. Here we report that in contrast to correlated activity of excitatory synaptic inputs in the intact cortex, isolated thalamic inputs exhibit lower variability and asynchronous spontaneous and sensory-evoked inputs. These results are further supported in awake mice when we recorded the excitatory inputs of individual cortical cells simultaneously with the local field potential in a nearby site. Our results therefore indicate that cortical synchronization emerges by intracortical coupling.


Electrophysiological Phenomena , Somatosensory Cortex/physiology , Thalamus/physiology , Vibrissae/physiology , Animals , Data Interpretation, Statistical , Female , Male , Mice , Neurons/physiology , Patch-Clamp Techniques , Thalamus/cytology
12.
Front Syst Neurosci ; 10: 56, 2016.
Article En | MEDLINE | ID: mdl-27445716

Stimulus specific adaptation has been studied extensively in different modalities. High specificity implies that deviant stimulus induces a stronger response compared to a common stimulus. The thalamus gates sensory information to the cortex, therefore, the specificity of adaptation in the thalamus must have a great impact on cortical processing of sensory inputs. We studied the specificity of adaptation to whisker identity in the ventral posteromedial nucleus of the thalamus (VPM) in rats using extracellular and intracellular recordings. We found that subsequent to repetitive stimulation that induced strong adaptation, the response to stimulation of the same, or any other responsive whisker was equally adapted, indicating that thalamic adaptation is non-specific. In contrast, adaptation of single units in the upstream brainstem principal trigeminal nucleus (PrV) was significantly more specific. Depolarization of intracellularly recorded VPM cells demonstrated that adaptation is not due to buildup of inhibition. In addition, adaptation increased the probability of observing complete synaptic failures to tactile stimulation. In accordance with short-term synaptic depression models, the evoked synaptic potentials in response to whisker stimulation, subsequent to a response failure, were facilitated. In summary, we show that local short-term synaptic plasticity is involved in the transformation of adaptation in the trigemino-thalamic synapse and that the low specificity of adaptation in the VPM emerges locally rather than cascades from earlier stages. Taken together we suggest that during sustained stimulation, local thalamic mechanisms equally suppress inputs arriving from different whiskers before being gated to the cortex.

13.
Elife ; 52016 03 24.
Article En | MEDLINE | ID: mdl-27011354

Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging.


Biosensing Techniques/methods , Calcium/analysis , Intravital Microscopy/methods , Luminescent Proteins/metabolism , Neurons/chemistry , Neurons/physiology , Neurophysiology/methods , Animals , Caenorhabditis elegans , Cells, Cultured , Drosophila , Luminescent Proteins/genetics , Mice , Zebrafish , Red Fluorescent Protein
14.
J Neurosci ; 35(18): 6997-7002, 2015 May 06.
Article En | MEDLINE | ID: mdl-25948252

Adaptation allows neurons to respond to a wide range of stimulus intensities. However, it also leads to ambiguity as the representation of the external world depends on the context. We recorded neurons from Wistar rats' brainstem nuclei belonging to two major somatosensory pathways (lemniscal and paralemniscal) and explored the way in which they encode noisy stimuli under different contexts. We found that although their unadapted intensity-response curves are very similar, the adapted curves of the two pathways are distinctively different as they are optimized for encoding different intensity ranges. Lemniscal neurons most faithfully encoded stimuli when the background intensity was high, whereas paralemniscal cells best encoded stimuli under low intensity context. Intracellular recordings indicate that these differences emerge already at the synaptic level. We suggest that the two pathways synergistically improve the ability of this system to encode a wide range of intensities during natural stimulation, potentially reducing the inherent ambiguity of adaptive coding.


Adaptation, Physiological/physiology , Evoked Potentials, Somatosensory/physiology , Somatosensory Cortex/physiology , Touch/physiology , Vibrissae/physiology , Animals , Female , Male , Neural Pathways/physiology , Rats , Rats, Wistar
15.
J Cereb Blood Flow Metab ; 34(2): 221-7, 2014 Feb.
Article En | MEDLINE | ID: mdl-24149933

Organophosphate-induced brain damage is an irreversible neuronal injury, likely because there is no pharmacological treatment to prevent or block secondary damage processes. The presence of free glutamate (Glu) in the brain has a substantial role in the propagation and maintenance of organophosphate-induced seizures, thus contributing to the secondary brain damage. This report describes for the first time the ability of blood glutamate scavengers (BGS) oxaloacetic acid in combination with glutamate oxaloacetate transaminase to reduce the neuronal damage in an animal model of paraoxon (PO) intoxication. Our method causes a rapid decrease of blood Glu levels and creates a gradient that leads to the efflux of the excess brain Glu into the blood, thus reducing neurotoxicity. We demonstrated that BGS treatment significantly prevented the peripheral benzodiazepine receptor (PBR) density elevation, after PO exposure. Furthermore, we showed that BGS was able to rescue neurons in the piriform cortex of the treated rats. In conclusion, these results suggest that treatment with BGS has a neuroprotective effect in the PO intoxication. This is the first time that this approach is used in PO intoxication and it may be of high clinical significance for the future treatment of the secondary neurologic damage post organophosphates exposure.


Aspartate Aminotransferases/pharmacology , Brain Injuries , Cholinesterase Inhibitors/adverse effects , Oxaloacetic Acid/pharmacology , Paraoxon/adverse effects , Animals , Brain Injuries/blood , Brain Injuries/chemically induced , Brain Injuries/drug therapy , Brain Injuries/pathology , Carrier Proteins/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/physiology , Cholinesterase Inhibitors/pharmacology , Disease Models, Animal , Hep G2 Cells , Humans , Male , Neurons/metabolism , Neurons/pathology , Paraoxon/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism
16.
J Neurosci ; 33(39): 15394-400, 2013 Sep 25.
Article En | MEDLINE | ID: mdl-24068807

Tactile information ascends from the brainstem to the somatosensory cortex via two major parallel pathways, lemniscal and paralemniscal. In both pathways, and throughout all processing stations, adaptation effects are evident. Although parallel processing of sensory information is not unique to this system, the distinct information carried by these adaptive pathways remains unclear. Using in vivo intracellular recordings at their divergence point (brainstem trigeminal complex) in rats, we found opposite adaptation effects in the corresponding nuclei of these two pathways. Increasing the intensity of vibrissa stimulation entailed more adaption in paralemniscal neurons, whereas it caused less adaptation in lemniscal cells. Furthermore, increasing the intensity sharpens lemniscal receptive field profile as adaptation progresses. We hypothesize that these pathways evolved to operate optimally at different dynamic ranges of sustained sensory stimulation. Accordingly, the two pathways are likely to serve different functional roles in the transmission of weak and strong inputs. Hence, our results suggest that due to the disparity in the adaptation properties of two major parallel pathways in this system, high and reliable throughput of information can be achieved at a wider range of stimulation intensities than by each pathway alone.


Adaptation, Physiological , Somatosensory Cortex/physiology , Touch , Trigeminal Nuclei/physiology , Animals , Neural Pathways/physiology , Neurons/physiology , Rats , Rats, Wistar , Vibrissae/innervation
17.
Invest New Drugs ; 30(6): 2226-35, 2012 Dec.
Article En | MEDLINE | ID: mdl-22392507

L-Glutamate (Glu) plays a crucial role in the growth of malignant gliomas. We have established the feasibility of accelerating a naturally occurring brain to-blood Glu efflux by decreasing blood Glu levels with intravenous oxaloacetate, the respective Glu co-substrate of the blood resident enzyme humane glutamate­oxaloacetate transaminase(hGOT). We wished to demonstrate that blood Glu scavenging provides neuroprotection in the case of glioma.We now describe the neuroprotective effects of blood Glu scavenging in a fatal condition such as brain-implanted C6 glioma in rats and brain-implanted human U87 MG glioma in nude mice. Rat (C-6) or human (U87) glioma cells were grafted stereotactically in the brain of rats or mice. After development of tumors, the animals were drinking oxaloacetate with or without injections of hGOT. In addition, mice were treated with combination treatment, which included drinking oxaloacetate with intracutaneous injections of hGOT and intraperitoneal injection of Temozolomide. Animals drinking oxaloacetate with or without injections of hGOT displayed a smaller tumor volume, reduced invasiveness and prolonged survival than control animals drinking saline. These effects were significantly enhanced by Temozolomide in mice, which increased survival by 237%. This is the first demonstration of blood Glu scavenging in brain cancer, and because of its safety, is likely to be of clinical significance for the future treatment of human gliomas. As we demonstrated, the blood glutamate scavenging treatment in combination with TMZ could be a good candidate or as an alternative treatment to the patients that do not respond to TMZ.


Antineoplastic Agents, Alkylating/administration & dosage , Aspartate Aminotransferases/administration & dosage , Dacarbazine/analogs & derivatives , Glutamic Acid/blood , Oxaloacetic Acid/administration & dosage , Animals , Brain , Brain Neoplasms/blood , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Dacarbazine/administration & dosage , Glioma/blood , Glioma/pathology , Humans , Male , Mice , Mice, Nude , Rats , Rats, Sprague-Dawley , Temozolomide , Tumor Burden/drug effects
18.
Invest New Drugs ; 2012 Feb 02.
Article En | MEDLINE | ID: mdl-22297683

L-Glutamate (Glu) plays a crucial role in the growth of malignant gliomas. We have established the feasibility of accelerating a naturally occurring brain to-blood Glu efflux by decreasing blood Glu levels with intravenous oxaloacetate, the respective Glu co-substrate of the blood resident enzyme humane glutamate-oxaloacetate transaminase (hGOT). We wished to demonstrate that blood Glu scavenging provides neuroprotection in the case of glioma. We now describe the neuroprotective effects of blood Glu scavenging in a fatal condition such as brain-implanted C6 glioma in rats and brain-implanted human U87 MG glioma in nude mice. Rat (C-6) or human (U87) glioma cells were grafted stereotactically in the brain of rats or mice. After development of tumors, the animals were drinking oxaloacetate with or without injections of hGOT. In addition, mice were treated with combination treatment, which included drinking oxaloacetate with intracutaneous injections of hGOT and intraperitoneal injection of Temozolomide. Animals drinking oxaloacetate with or without injections of hGOT displayed a smaller tumor volume, reduced invasiveness and prolonged survival than control animals drinking saline. These effects were significantly enhanced by Temozolomide in mice, which increased survival by 237%. This is the first demonstration of blood Glu scavenging in brain cancer, and because of its safety, is likely to be of clinical significance for the future treatment of human gliomas. As we demonstrated, the blood glutamate scavenging treatment in combination with TMZ could be a good candidate or as an alternative treatment to the patients that do not respond to TMZ.

19.
J Neurosurg Anesthesiol ; 23(1): 45-9, 2011 Jan.
Article En | MEDLINE | ID: mdl-21248494

BACKGROUND: Abnormally high concentrations of glutamate in brain fluids have been shown to be neurotoxic and correlate with a poor neurological outcome following traumatic brain injury (TBI). Since brain fluid glutamate can be reduced by scavenging blood glutamate, the purpose of this study was to investigate factors that may potentially influence levels of blood glutamate, glucose, and the enzymes glutamate-pyruvate transaminase (GPT) and glutamate-oxaloacetate transaminase (GOT) in healthy individuals. METHODS: Factors that were examined included age, gender, time of last meal or drink, and recent consumption of coffee. A total of 112 healthy volunteers between 18 and 70 years of age participated in the study. The average participant was 38 years old, and the sample consisted of 48 males and 64 females. Five milliliters of venous blood was collected from participants' cubital vein and blood glutamate, glucose, GOT and GPT levels were determined. Participants were then asked to complete a questionnaire addressing their gender, age, time of last meal, time of last drink, and whether coffee was consumed within the last 6 hours. RESULTS: Blood glutamate concentrations were significantly higher in males than in females (P < 0.001) and may be due to effects of estrogen and progesterone. Concentrations of GOT were significantly higher in males than in females (P < 0.01). Concentrations of GPT were significantly higher in males than in females (P < 0.01). There were no other significant differences demonstrated. CONCLUSIONS: Understanding the factors that affect blood glutamate levels may give new insight into mechanisms that protect the brain from excess glutamate and result in a better neurological outcome following TBI.


Glutamic Acid/blood , Adolescent , Adult , Aged , Aging , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Blood Glucose/metabolism , Brain Chemistry , Coffee , Eating/physiology , Female , Glutamic Acid/metabolism , Humans , Male , Middle Aged , Reference Values , Sex Characteristics , Young Adult
20.
Biol Reprod ; 84(3): 581-6, 2011 Mar.
Article En | MEDLINE | ID: mdl-20980684

The gonadal steroids estrogen and progesterone have been shown to have neuroprotective properties against various neurodegenerative conditions. Excessive concentrations of glutamate have been found to exert neurotoxic properties. We hypothesize that estrogen and progesterone provide neuroprotection by the autoregulation of blood and brain glutamate levels. Venous blood samples (10 ml) were taken from 31 men and 45 women to determine blood glutamate, estrogen, progesterone, glucose, glutamate-pyruvate transaminase (GPT), and glutamate-oxaloacetate transaminase (GOT) levels, collected on Days 1, 7, 12, and 21 of the female participants' menstrual cycle. Blood glutamate concentrations were higher in men than in women at the start of menstruation (P < 0.05). Blood glutamate levels in women decreased significantly on Days 7 (P < 0.01), 12 (P < 0.001), and 21 (P < 0.001) in comparison with blood glutamate levels on Day 1. There was a significant decrease in blood glutamate levels on Days 12 (P < 0.001) and 21 (P < 0.001) in comparison with blood glutamate levels on Day 7. Furthermore, there was an increase in blood glutamate levels on Day 21 compared with Day 12 (P < 0.05). In women, there were elevated levels of estrogen on Days 7 (P < 0.05), 12, and 21 (P < 0.001), and elevated levels of progesterone on Days 12 and 21 (P < 0.001). There were no differences between men and women with respect to blood glucose concentrations. Concentrations of GOT (P < 0.05) and GPT (P < 0.001) were significantly higher in men than in women during the entire cycle. The results of this study demonstrate that blood glutamate levels are inversely correlated to levels of plasma estrogen and progesterone.


Estrogens/pharmacology , Glutamic Acid/blood , Menstrual Cycle/blood , Progesterone/pharmacology , Adolescent , Adult , Blood Glucose/analysis , Estrogens/blood , Female , Humans , Male , Menstrual Cycle/drug effects , Middle Aged , Osmolar Concentration , Progesterone/blood , Time Factors , Young Adult
...