Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Front Bioeng Biotechnol ; 11: 1296531, 2023.
Article En | MEDLINE | ID: mdl-38149172

Introduction: A regenerative strategy employing extracellular matrix (ECM)-based biomaterials and stem cells provide a better approach to mimicking the three-dimensional (3D) microenvironment of intervertebral disc for endogenous tissue regeneration. However, there is currently limited understanding regarding the human Wharton Jelly derived-mesenchymal stem cells (hWJ-MSCs) towards nucleus pulposus (NP)-like cells. Our study focused on the development of 3D bioengineered hydrogel based on the predominant ECM of native NP, including type II collagen (COLII) and hyaluronic acid (HA), which aims to tailor the needs of the microenvironment in NP. Methods: We have fabricated a 3D hydrogel using from COLII enriched with HA by varying the biomacromolecule concentration and characterised it for degradation, stability and swelling properties. The WJ-MSC was then encapsulated in the hydrogel system to guide the cell differentiation into NP-like cells. Results: We successfully fabricated COLII hydrogel (2 mg/ml) and HA 10 mg/ml at a weight ratio of HA and COLII at 1:9 and 4.5:9, and both hydrogels physically maintained their 3D sphere-shaped structure after complete gelation. The higher composition of HA in the hydrogel system indicated a higher water intake capacity in the hydrogel with a higher amount of HA. All hydrogels showed over 60% hydrolytic stability over a month. The hydrogel showed an increase in degradation on day 14. The hWJ-MSCs encapsulated in hydrogel showed a round morphology shape that was homogenously distributed within the hydrogel of both groups. The viability study indicated a higher cell growth of hWJ-MSCs encapsulated in all hydrogel groups until day 14. Discussion: Overall, our findings demonstrate that HA/COLII hydrogel provides an optimal swelling capacity, stability, degradability, and non-cytotoxic, thus mimics the NP microenvironment in guiding hWJ-MSCs towards NP phenotype, which is potentially used as an advanced cell delivery system for intervertebral disc regeneration.

2.
Article En | MEDLINE | ID: mdl-36453484

BACKGROUND: Piper sarmentosum (PS) is a traditional herb used by Southeast Asian communities to treat various illnesses. Recent pharmacological studies have discovered that PS possesses antioxidant and anti-inflammatory activities. Since oxidative stress and inflammation are two important processes driving the pathogenesis of bone loss, PS may have potential therapeutic effects against osteoporosis. OBJECTIVE: This review systematically summarised the therapeutic effects of PS on preventing osteoporosis and promoting fracture healing. METHODS: A systematic literature search was performed in November 2021 using 4 electronic databases and the search string "Piper sarmentosum" AND (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes). RESULTS: Nine unique articles were identified from the literature. The efficacy of PS has been studied in animal models of osteoporosis induced by ovariectomy and glucocorticoids, as well as bone fracture models. PS prevented deterioration of bone histomorphometric indices, improved fracture healing and restored the biomechanical properties of healed bone in ovariectomised rats. PS also prevented osteoblast/osteocyte apoptosis, increased bone formation and mineralisation and subsequently improved trabecular bone microstructures and strength of rats with osteoporosis induced by glucocorticoids. Apart from its antioxidant and anti-inflammatory activity, PS also suppressed circulating and skeletal expression of corticosterone and skeletal expression of 11ß hydroxysteroid dehydrogenase type 1 but increased the enzyme activity in the glucocorticoid osteoporosis model. This review also identified several research gaps about the skeletal effects of PS and suggested future studies to bridge these gaps. CONCLUSION: PS may be of therapeutic benefit to bone health. However, further research is required to validate this claim.


Osteoporosis , Piper , Female , Rats , Animals , Fracture Healing , Bone Density , Antioxidants/pharmacology , Piper/chemistry , Plant Extracts/pharmacology , Glucocorticoids/therapeutic use , Anti-Inflammatory Agents/pharmacology , Osteoporosis/metabolism
3.
Front Pharmacol ; 13: 968664, 2022.
Article En | MEDLINE | ID: mdl-36313379

Background: Burns are considered a critical care problem in emergency medicine, resulting in physical, psychological, and chronic disabilities. Silver sulfadiazine is the gold standard in topical burn treatment but was associated with toxicity to keratinocytes and fibroblasts, which may delay wound healing. In discovering potential alternative treatments for burn wound healing, this study was performed to determine the effect of Labisia Pumila (Blume) Fern.-Vill. Var. Alata (LPVa) extract on thermal-burn wounds in rats. Methods: A total of 50 Sprague-Dawley male rats were categorized into five groups. There were three control groups; normal control (left untreated), negative control (given ointment base) and positive control (given silver sulfadiazine). Meanwhile, the two intervention groups were given with 2% LPVa leaf and root extracts, respectively. Burn wounds were inflicted on the loin region of the rat by applying a heated steel rod at 80°C for 10 s. On days 3, 7, 14, and 21, wounds were measured macroscopically using a digital calliper and one animals of each group were sacrificed, and the wounded skin were excised for histomorphological assessments. The wounds were excised for hydroxyproline content on Day 14 of treatment. Result: For wound contraction percentage, both the leaf and root extracts of LPVa showed a significant reduction in burn wound size on Day 7 onwards, when compared to other groups. For hydroxyproline content, only the leaf extract of LPVa produced significantly higher content compared to both negative and normal control groups. In terms of histological examination, the leaf extract group demonstrated a superior healing effect than the root extract group. Conclusion: Both leaf and root extracts of LPVa could promote wound healing in the thermal-burn wound rat model, with leaf extract being superior to root extract.

4.
Molecules ; 27(18)2022 Sep 09.
Article En | MEDLINE | ID: mdl-36144598

Glucocorticoid-induced osteogenic dysfunction is the main pathologyical mechanism underlying the development of glucocorticoid-induced osteoporosis. Glucocorticoids promote adipogenic differentiation and osteoblast apoptosis through various pathways. Various ongoing studies are exploring the potential of natural products in preventing glucocorticoid-induced osteoporosis. Preclinical studies have consistently shown the bone protective effects of tocotrienol through its antioxidant and anabolic effects. This review aims to summarise the potential mechanisms of tocotrienol in preventing glucocorticoid-induced osteoporosis based on existing in vivo and in vitro evidence. The current literature showed that tocotrienol prevents oxidative damage on osteoblasts exposed to high levels of glucocorticoids. Tocotrienol reduces lipid peroxidation and increases oxidative stress enzyme activities. The reduction in oxidative stress protects the osteoblasts and preserves the bone microstructure and biomechanical strength of glucocorticoid-treated animals. In other animal models, tocotrienol has been shown to activate the Wnt/ß-catenin pathway and lower the RANKL/OPG ratio, which are the targets of glucocorticoids. In conclusion, tocotrienol enhances osteogenic differentiation and bone formation in glucocorticoid-treated osteoblasts while improving structural integrity in glucocorticoid-treated rats. This is achieved by preventing oxidative stress and osteoblast apoptosis. However, these preclinical results should be validated in a randomised controlled trial.


Anabolic Agents , Biological Products , Osteoporosis , Tocotrienols , Anabolic Agents/pharmacology , Animals , Antioxidants/metabolism , Biological Products/pharmacology , Glucocorticoids/adverse effects , Osteoblasts , Osteogenesis , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/metabolism , Rats , Tocotrienols/chemistry , Tocotrienols/pharmacology , beta Catenin/metabolism
5.
Biomed Pharmacother ; 152: 113265, 2022 Aug.
Article En | MEDLINE | ID: mdl-35709654

The current prevention options for postmenopausal osteoporosis are very limited. E'Jiao is a collagen-rich traditional Chinese medicine with the potential to prevent osteoporosis but more comprehensive investigations are lacking. This study aimed to investigate the skeletal protective effects of E'Jiao in a rat model of osteoporosis caused by ovariectomy. Female Sprague Dawley rats (n = 42) were randomly assigned into baseline, sham, ovariectomised (OVX) control, OVX-treated with low-dose (0.26 g/kg), medium dose (0.53 g/kg) and high dose E'Jiao (1.06 g/kg), as well as calcium carbonate (1% w/v) groups. Daily treatment through oral gavage was initiated 7 days after OVX. The rats were euthanised after eight weeks of treatment. Bone mineral density and content were measured at baseline, 1 and 2 months after treatment. Blood was collected for the measurement of bone remodelling markers. Femur and tibial bones were collected for histomorphometry and biomechanical strength analysis. Untreated OVX rats showed high bone remodelling marked by the increased bone formation and bone resorption markers, as well as increased mineralising surface/bone surface ratio. In addition, osteoclast surface and single-labelled surface were increased while mineral apposition rate was reduced in the untreated OVX rats. These changes were antagonised by E'Jiao at all doses. However, the structural, cellular and biomechanical parameters were not affected by ovariectomy and treatment. In conclusion, E'Jiao prevented high bone remodelling during oestrogen deficiency but a long-term study will be required to establish its effects on structural and biomechanical changes due to oestrogen deficiency.


Bone Density , Osteoporosis , Animals , Bone Remodeling , Estrogens/pharmacology , Female , Humans , Osteoporosis/prevention & control , Rats , Rats, Sprague-Dawley
6.
Nutrients ; 15(1)2022 Dec 24.
Article En | MEDLINE | ID: mdl-36615749

Skin exposure to ultraviolet (UV) rays in the sun causes premature ageing and may predispose to skin cancers. UV radiation generates excessive free radical species, resulting in oxidative stress, which is responsible for cellular and DNA damage. There is growing evidence that phytonutrients such as flavonoids and carotenoids may impede oxidative stress and prevent photodamage. We conducted a systematic review of the literature to explore the effects of certain phytonutrients in preventing skin photodamage. We searched the electronic Medline (Ovid) and Pubmed databases for relevant studies published between 2002 and 2022. The main inclusion criteria were articles written in English, and studies reporting the effects of phytonutrient-containing plants of interest on the skin or skin cells exposed to UV radiation. We focused on tea, blueberries, lemon, carrot, tomato, and grapes, which are rich in flavonoids and/or carotenoids. Out of 434 articles retrieved, 40 were identified as potentially relevant. Based on our inclusion criteria, nine articles were included in the review. The review comprises three combined in vitro and animal studies, four human studies, one in vitro research, and one mixed in vitro and human study. All the studies reported positive effects of flavonoids and carotenoid-containing plant extract on UV-induced skin damage. This evidence-based review highlights the potential use of flavonoids and carotenoids found in plants in preventing the deleterious effects of UV radiation on the skin. These compounds may have a role in clinical and aesthetic applications for the prevention and treatment of sunburn and photoaging, and may potentially be used against UV-related skin cancers.


Skin Neoplasms , Sunburn , Animals , Humans , Ultraviolet Rays/adverse effects , Flavonoids/pharmacology , Carotenoids/pharmacology , Skin , Skin Neoplasms/prevention & control
7.
Molecules ; 26(13)2021 Jun 29.
Article En | MEDLINE | ID: mdl-34210097

Obesity and hyperlipidemia are metabolic dysregulations that arise from poor lifestyle and unhealthy dietary intakes. These co-morbidity conditions are risk factors for vascular diseases. Piper sarmentosum (PS) is a nutritious plant that has been shown to pose various phytochemicals and pharmacological actions. This study aimed to investigate the effect of PS on obesity and hyperlipidemia in an animal model. Forty male Wistar rats were randomly divided into five experimental groups. The groups were as follows: UG-Untreated group; CTRL-control; FDW-olive oil + 20% fructose; FDW-PS-PS (125 mg/kg) + 20% fructose; FDW-NGN-naringin (100 mg/kg) + 20% fructose. Fructose drinking water was administered daily for 12 weeks ad libitum to induce metabolic abnormality. Treatment was administered at week 8 for four weeks via oral gavage. The rats were sacrificed with anesthesia at the end of the experimental period. Blood, liver, and visceral fat were collected for further analysis. The consumption of 20% fructose water by Wistar rats for eight weeks displayed a tremendous increment in body weight, fat mass, percentage fat, LDL, TG, TC, HMG-CoA reductase, leptin, and reduced the levels of HDL and adiponectin as well as adipocyte hypertrophy. Following the treatment period, FDW-PS and FDW-NGN showed a significant reduction in body weight, fat mass, percentage fat, LDL, TG, TC, HMG-CoA reductase, and leptin with an increment in the levels of HDL and adiponectin compared to the FDW group. FDW-PS and FDW-NGN also showed adipocyte hypotrophy compared to the FDW group. In conclusion, oral administration of 125 mg/kg PS methanolic extract to fructose-induced obese rats led to significant amelioration of obesity and hyperlipidemia through suppressing the adipocytes and inhibiting HMG-CoA reductase. PS has the potential to be used as an alternative or adjunct therapy for obesity and hyperlipidemia.


Fructose/adverse effects , Hyperlipidemias , Metabolic Syndrome , Methanol/chemistry , Obesity , Piper/chemistry , Plant Extracts , Animals , Fructose/pharmacology , Hyperlipidemias/chemically induced , Hyperlipidemias/drug therapy , Hyperlipidemias/metabolism , Male , Metabolic Syndrome/chemically induced , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Obesity/chemically induced , Obesity/drug therapy , Obesity/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats , Rats, Wistar
8.
Diabetes Metab Syndr Obes ; 14: 241-256, 2021.
Article En | MEDLINE | ID: mdl-33500644

Metabolic syndrome (MetS) refers to the simultaneous presence of hypertension, hyperglycemia, dyslipidemia and/or visceral obesity, which predisposes a person to cardiovascular diseases and diabetes. Evidence suggesting the presence of direct and indirect associations between MetS and osteoporosis is growing. Many studies have reported the beneficial effects of polyphenols in alleviating MetS in in vivo and in vitro models through their antioxidant and anti-inflammation actions. This review aims to summarize the effects of honey (based on unifloral and multi-floral nectar sources) on bone metabolism and each component of MetS. A literature search was performed using the PubMed and Scopus databases using specific search strings. Original studies related to components of MetS and bone, and the effects of honey on components of MetS and bone were included. Honey polyphenols could act synergistically in alleviating MetS by preventing oxidative damage and inflammation. Honey intake is shown to reduce blood glucose levels and prevent excessive weight gain. It also improves lipid metabolism by reducing total cholesterol, triglycerides and low-density lipoprotein, as well as increasing high-density lipoprotein. Honey can prevent bone loss by reducing the adverse effects of MetS on bone homeostasis, apart from its direct action on the skeletal system. In conclusion, honey supplementation could be integrated into the management of MetS and MetS-induced bone loss as a preventive and adjunct therapeutic agent.

9.
Int J Mol Sci ; 21(20)2020 Oct 19.
Article En | MEDLINE | ID: mdl-33086468

Glucocorticoids are one of the causes of secondary osteoporosis. The aqueous extract of Piper sarmentosum contains flavonoids that possess antioxidant effects. In this study, we determined the effects of aqueous Piper sarmentosum leaf extract on structural, dynamic and static histomorphometric changes from osteoporotic bones of rats induced with glucocorticoids. Thirty-two Sprague-Dawley rats were divided equally into four groups-Sham control group given vehicles (intramuscular (IM) olive oil and oral normal saline); AC: Adrenalectomised (Adrx) control group given IM dexamethasone (DEX) (120 µg/kg/day) and vehicle (oral normal saline); AP: Adrx group administered IM DEX (120 µg/kg/day) and aqueous Piper sarmentosum leaf extract (125 mg/kg/day) orally; and AG: Adrx group administered IM DEX (120 µg/kg/day) and oral glycyrrhizic acid (GCA) (120 mg/kg/day). Histomorphometric measurements showed that the bone volume, trabecular thickness, trabecular number, osteoid and osteoblast surfaces, double-labelled trabecular surface, mineralizing surface and bone formation rate of rats given aqueous Piper sarmentosum leaf extract were significantly increased (p < 0.05), whereas the trabecular separation and osteoclast surface were significantly reduced (p < 0.05). This study suggests that aqueous Piper sarmentosum leaf extract was able to prevent bone loss in prolonged glucocorticoid therapy. Thus, Piper sarmentosum has the potential to be used as an alternative medicine against osteoporosis and osteoporotic fractures in patients undergoing long-term glucocorticoid therapy.


Bone and Bones/pathology , Piper/chemistry , Plant Extracts/pharmacology , Protective Agents/pharmacology , Water/chemistry , Animals , Bone and Bones/drug effects , Calcification, Physiologic/drug effects , Cancellous Bone/drug effects , Cancellous Bone/pathology , Male , Rats, Sprague-Dawley
10.
Article En | MEDLINE | ID: mdl-31641368

Bone remodelling is a complex and tightly regulated process. Disruption of bone remodelling skewing towards resorption will cause osteoporosis and increase the risk of fragility fracture. Honey is a natural product containing various bioactive ingredients with health benefits, especially polyphenols. Therefore, honey may be a novel dietary supplement to prevent osteoporosis. This review aims to summarize the current evidence on the effects of honey on bone health. The evidence reported so far indicates a skeletal-beneficial effect of honey in animal models of osteoporosis. However, the number of studies on humans is limited. Honey can protect the bone via its antioxidant and anti-inflammatory properties, primarily through its polyphenol content that acts upon several signalling pathways, leading to bone anabolic and antiresorptive effects. In conclusion, honey is a potential functional food for bone health, but the dose and the bioactive contents of honey need to be verified prior to its application in humans.

11.
Article En | MEDLINE | ID: mdl-31412648

Osteoarthritis is a degenerative joint disease which primarily affects the articular cartilage and subchondral bones. Since there is an underlying localized inflammatory component in the pathogenesis of osteoarthritis, compounds like tocotrienol with anti-inflammatory properties may be able to retard its progression. This study aimed to determine the effects of oral tocotrienol supplementation on the articular cartilage and subchondral bone in a rat model of osteoarthritis induced by monosodium iodoacetate (MIA). Thirty male Sprague-Dawley rats (three-month-old) were randomized into five groups. Four groups were induced with osteoarthritis (single injection of MIA at week 0) and another served as the sham group. Three of the four groups with osteoarthritis were supplemented with annatto tocotrienol at 50, 100 and 150 mg/kg/day orally for five weeks. At week 5, all rats were sacrificed, and their tibial-femoral joints were harvested for analysis. The results indicated that the groups which received annatto tocotrienol at 100 and 150 mg/kg/day had lower histological scores and cartilage remodeling markers. Annatto tocotrienol at 150 mg/kg/day significantly lowered the osteocalcin levels and osteoclast surface of subchondral bone. In conclusion, annatto tocotrienol may potentially retard the progression of osteoarthritis. Future studies to confirm its mechanism of joint protection should be performed.


Bone and Bones/drug effects , Carotenoids/pharmacology , Cartilage, Articular/drug effects , Osteoarthritis/drug therapy , Plant Extracts/pharmacology , Tocotrienols/pharmacology , Animals , Bixaceae , Bone and Bones/pathology , Cartilage, Articular/pathology , Disease Models, Animal , Male , Osteoarthritis/chemically induced , Osteoarthritis/pathology , Rats , Rats, Sprague-Dawley
12.
Article En | MEDLINE | ID: mdl-30854019

BACKGROUND: Metabolic syndrome (MetS), which consists of cluster of conditions, hypertension, hyperlipidemia, hyperglycemia, and visceral obesity, is affecting population worldwide. Studies have shown that plant derived flavonoids have the ability to alleviate MetS. Naringin is a type of glycoside flavonoid found in most plant and it plays a critical role in the treatment of MetS due to its antioxidant activity and ability to regulate cytokines. METHODS: A systematic review was done to study the effects of naringin on the metabolic diseases using electronic databases which include Ovid and Scopus using specific descriptors published from the year 2010 till present to provide updated literature on this field. The articles were assessed and chosen based on the criteria in which the mechanisms and effects of naringin on different metabolic diseases were reported. RESULTS: Thirty-four articles were identified which referred to the studies that correspond to the previously stated criteria. Subsequently after screening for the articles that were published after the year 2010, finally, 19 articles were selected and assessed accordingly. Based on the assessment, naringin could alleviate MetS by reducing visceral obesity, blood glucose, blood pressure, and lipid profile and regulating cytokines. CONCLUSIONS: Naringin is an antioxidant that appears to be efficacious in alleviating MetS by preventing oxidative damage and proinflammatory cytokine release. However, the dosage used in animal studies might not be achieved in human trials. Thus, adequate investigation needs to be conducted to confirm naringin's effects on humans.

13.
Molecules ; 21(11)2016 Nov 15.
Article En | MEDLINE | ID: mdl-27854305

Glucocorticoid-induced osteoporosis is one of the common causes of secondary osteoporosis. Piper sarmentosum (Ps) extract possesses antioxidant and anti-inflammatory activities. In this study, we determined the correlation between the effects of Ps leaf water extract with the regulation of 11ß-hydroxysteroid dehydrogenase (HSD) type 1 enzyme activity in serum and bone of glucocorticoid-induced osteoporotic rats. Twenty-four Sprague-Dawley rats were grouped into following: G1: sham-operated group administered with intramuscular vehicle olive oil and vehicle normal saline orally; G2: adrenalectomized (adrx) control group given intramuscular dexamethasone (120 µg/kg/day) and vehicle normal saline orally; G3: adrx group given intramuscular dexamethasone (120 µg/kg/day) and water extract of Piper sarmentosum (125 mg/kg/day) orally. After two months, the femur and serum were taken for ELISA analysis. Results showed that Ps leaf water extract significantly reduced the femur corticosterone concentration (p < 0.05). This suggests that Ps leaf water extract was able to prevent bone loss due to long-term glucocorticoid therapy by acting locally on the bone cells by increasing the dehydrogenase action of 11ß-HSD type 1. Thus, Ps may have the potential to be used as an alternative medicine against osteoporosis and osteoporotic fracture in patients on long-term glucocorticoid treatment.


11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Bone and Bones/drug effects , Bone and Bones/metabolism , Glucocorticoids/adverse effects , Osteoporosis/etiology , Osteoporosis/metabolism , Piper/chemistry , Plant Extracts/pharmacology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/blood , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Biomarkers , Body Weight/drug effects , Corticosterone/blood , Corticosterone/metabolism , Disease Models, Animal , Osteoporosis/blood , Osteoporosis/drug therapy , Plant Extracts/chemistry , Rats
14.
Article En | MEDLINE | ID: mdl-25789255

BACKGROUND: Previous studies on the relationship between bone health and metabolic syndrome (MS) have revealed heterogeneous results. There are limited studies employing bone quantitative ultrasonometry in evaluating this relationship. This study aimed to determine the relationship between MS and bone health in a group of Malaysian middle-aged and elderly men using bone quantitative ultrasonometry. METHODS: This cross-sectional study recruited 309 free living Chinese and Malay men aged 40 years and above residing in Klang Valley, Malaysia. Their demographic and anthropometric data were collected. Their calcaneal speed of sound (SOS) was measured using a CM-200 bone ultrasonometer. Their blood was collected for the evaluation of lipid profile, total testosterone and sex hormone-binding globulin. The joint interim MS definition was used for the classification of subjects. Multiple linear regression analysis was used to assess the association between SOS and indicators of MS and the presence of MS, with suitable adjustment for confounders. RESULTS: There was no significant difference in SOS value between MS and non-MS subjects (p > 0.05). The SOS values among subjects with different MS scores did not differ significantly (p > 0.05). There were no significant associations between SOS values and indicators of MS or the presence of MS (p > 0.05). CONCLUSIONS: The relationship between bone health and MS is not significant in Malaysian middle-aged and elderly men. A longitudinal study should be conducted to evaluate the association between bone loss and MS to confirm this finding.

15.
Curr Drug Targets ; 14(14): 1675-82, 2013 Dec.
Article En | MEDLINE | ID: mdl-24107234

Osteoporosis is a major global health problem. Osteoporosis is characterized by the loss of bone mass and strength which leads to an increased risk of fracture. Glucocorticoid treatment is the leading cause of secondary osteoporosis. Glucocorticoid action in bone depends upon the expression of 11beta-hydroxysteroid dehydrogenase type 1 enzyme (11ß-HSD1). The oestrogen deficient state causes osteoporosis due to enhancement of osteoclastogenesis by oxidative stress which leads to increased bone resorption. Piper sarmentosum (Daun Kaduk) is commonly used in the local cuisine of South East Asia. It is also traditionally used to treat many diseases such as inflammation, dermatitis and joint pain. Studies have revealed antioxidant properties through its flavonoids compound naringenin which acts as a superoxide scavenger that may help in the endogenous antioxidant defence system to protect bone against osteoporosis. Recent studies found that Ps extract has the ability to inhibit the expression and activity of 11ß-HSD1 in adipose tissue and bone which restored bone structure and strength. It also accelerates fracture healing in the oestrogen deficient state through its antioxidant properties. The cost of conventional treatment is high and together with the adverse effects it leads to noncompliance. Treatment modalities with herbal medicine, less side effects and is cheaper need to be explored.This review focused on the therapeutic effect of Ps extract on fracture healing in ovariectomized rats and its protective effects against glucocorticoid induced osteoporotic rats.


Flavanones/therapeutic use , Osteoporosis/drug therapy , Piper/chemistry , Plant Extracts/therapeutic use , Animals , Bone Resorption/prevention & control , Flavanones/isolation & purification , Fracture Healing/drug effects , Fractures, Bone/prevention & control , Glucocorticoids/adverse effects , Humans , Malaysia , Medicine, East Asian Traditional , Osteoporosis/chemically induced , Osteoporosis/metabolism , Osteoporosis/pathology , Plant Extracts/isolation & purification , Receptors, Estrogen/metabolism
16.
Article En | MEDLINE | ID: mdl-22973403

Nigella sativa seeds (NS) has been used traditionally for various illnesses. The most abundant and active component of NS is thymoquinone (TQ). Animal studies have shown that NS and TQ may be used for the treatment of diabetes-induced osteoporosis and for the promotion of fracture healing. The mechanism involved is unclear, but it was postulated that the antioxidative, and anti-inflammatory activities may play some roles in the treatment of osteoporosis as this bone disease has been linked to oxidative stress and inflammation. This paper highlights studies on the antiosteoporotic effects of NS and TQ, the mechanisms behind these effects and their safety profiles. NS and TQ were shown to inhibit inflammatory cytokines such as interleukin-1 and 6 and the transcription factor, nuclear factor κB. NS and TQ were found to be safe at the current dosage for supplementation in human with precautions in children and pregnant women. Both NS and TQ have shown potential as antiosteoporotic agent but more animal and clinical studies are required to further assess their antiosteoporotic efficacies.

17.
EXCLI J ; 11: 226-36, 2012.
Article En | MEDLINE | ID: mdl-27366139

Curcuma longa (turmeric) rhizomes contains curcumin, an active compound which possesses anti-inflammatory effects. Collagen-induced arthritis (CIA) is an accepted experimental animal model of rheumatoid arthritis. The present study aimed to observe the histological changes in the joints of experimental arthritic rats treated with curcumin. Twenty four male Sprague-Dawley (approximately 7 weeks-old) rats were randomly divided into four groups. Three groups were immunized with 150 µg collagen. All rats with established CIA, with arthritis scores exceeding 1, were orally treated with betamethasone (0.5 mg/ml/kg body weight), curcumin (110 mg/ml/kg body weight) or olive oil (1.0 ml/kg body weight) daily, for two weeks. One remaining group was kept as normal control. Treatment with 110 mg/ml/kg curcumin showed significant mean differences in the average white blood cell (WBC) count (p<0.05), cell infiltration, bone and cartilage erosion scores (p<0.05) compared to the olive oil treated group. Pannus formation scores showed that curcumin supplementation successfully suppressed the pannus formation process that occurred in the articular cartilage of the CIA joints. The mean difference for histological scores for the curcumin group was insignificant compared to the betamethasone treated group. It is concluded that supplementation of curcumin has protective effect on the histopathological and degenerative changes in the joints of CIA rats which was at par with betamethasone.

18.
BMC Complement Altern Med ; 11: 94, 2011 Oct 12.
Article En | MEDLINE | ID: mdl-21992551

BACKGROUND: There has been no effective treatment or agent that is available for corneal injury in promoting corneal wound healing. Previous studies on edible bird's nest extract (EBN) had reported the presence of hormone-like substance; avian epidermal growth factor that could stimulate cell division and enhance regeneration. This study aimed to investigate the effects of EBN on corneal keratocytes proliferative capacity and phenotypical changes. METHODS: Corneal keratocytes from six New Zealand White Rabbits were isolated and cultured until Passage 1. The proliferative effects of EBN on corneal keratocytes were determined by MTT assay in serum-containing medium (FDS) and serum-free medium (FD). Keratocytes phenotypical changes were morphologically assessed and gene expression of aldehyde dehydrogenase (ALDH), collagen type 1 and lumican were determined through RT-PCR. RESULTS: The highest cell proliferation was observed when both media were supplemented with 0.05% and 0.1% EBN. Cell proliferation was also consistently higher in FDS compared to FD. Both phase contrast micrographs and gene expression analysis confirmed the corneal keratocytes retained their phenotypes with the addition of EBN. CONCLUSIONS: These results suggested that low concentration of EBN could synergistically induce cell proliferation, especially in serum-containing medium. This could be a novel breakthrough as both cell proliferation and functional maintenance are important during corneal wound healing. The in vitro test is considered as a crucial first step for nutri-pharmaceutical formation of EBN-based eye drops before in vivo application.


Biological Factors/pharmacology , Birds , Cornea/cytology , Corneal Diseases/drug therapy , Corneal Keratocytes/drug effects , Saliva/chemistry , Animals , Biological Factors/metabolism , Birds/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Cornea/drug effects , Corneal Diseases/physiopathology , Corneal Injuries , Corneal Keratocytes/cytology , Humans , Medicine, Chinese Traditional , Rabbits , Saliva/metabolism
...