Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Org Biomol Chem ; 21(45): 9091-9100, 2023 11 22.
Article En | MEDLINE | ID: mdl-37947030

Defluorination of the readily available 21,21,21-trifluorothevinone (7) with Mg + Me3SiCl allows the preparation of 21,21-difluorothevinone (10) and 21-fluorothevinone (11), which can be used as the starting compounds for syntheses of 21,21-difluoro- and 21-fluoro-substituted relatives of thevinols and orvinols. Taken together, thevinols and orvinols are well known to constitute a family of the highly potent 4,5α-epoxy-18,19-endo-(etheno/ethano)morphinan-type opioid receptor ligands. Alternatively, 10 and 18,19-dihydro-21,21-difluorothevinone (13) have been synthesized by the addition of Me3SiCHF2 to the carbonyl function of thevinal (12) and dihydrothevinal (18) followed by oxidation of the intermediate C(21)-difluorinated secondary alcohols. 21,21-Difluorothevinols were obtained both by the addition of RMgX or RLi to the 21,21-difluoroketones and by the addition of Me3SiCHF2 to the carbonyl function of the non-fluorinated 18,19-endo-(etheno/ethano)morphinan ketones. In general, these addition reactions have been shown to result in mixtures of the C(21)-epimeric alcohols. However, in some cases, the reactions proceeded with high stereoselectivity allowing the isolation of one of the epimeric alcohols by conventional crystallization. Preparations of the 21,21-difluorothevinols bearing an allyl, cyclopropylmethyl, or cyclobutylmethyl group at the N(17) nitrogen are also reported.


Morphinans , Receptors, Opioid , Morphinans/chemistry , Oxidation-Reduction , Ligands , Protein Binding , Receptors, Opioid, mu
2.
Eur J Med Chem ; 252: 115296, 2023 Apr 05.
Article En | MEDLINE | ID: mdl-36966650

Thevinols and their 3-O-demethylated relatives, orvinols, are derivatives of the Diels-Alder adduct of natural alkaloid thebaine with methyl vinyl ketone. Taken together, thevinols and orvinols constitute an important family of opioid receptor (OR) ligands playing an important role in both the OR mediated antinociception and OR antagonism. Herein, we disclose for the first time the OR activity of orvinols fluorinated within the pharmocophore associated with C(20) and its surrounding along with a dependence of the activity profile on the substituent at N(17). Starting from thevinone and 18,19-dihydrothevinone, a family of C(21)-fluorinated orvinols bearing methyl, cyclopropylmethyl (CPM), and allyl substituent at N(17) was synthesized. The fluorinated compounds were evaluated for OR activity. The orvinols bearing three fluorine atoms at C(21) were found to retain the properties of OR ligands and their activity profile depends on the substituent at N(17). Pilot in vivo experiments in a model of acute pain (tail-flick test in mice) revealed that 6-O-desmethyl-21,21,21-trifluoro-20-methylorvinol at doses 1.0-10.0 mg/kg (s.c.) exhibits analgesic activity at the level of morphine for a duration of 30-180 min. Its N(17)-CPM counterpart demonstrated the partial opioid agonist properties. The N(17)-allyl substituted derivative showed no analgesic activity. In vivo evaluation of an analgesic activity indicates that 21,21,21-trifluoro-20-methylorvinols represent a novel family of OR ligands related to buprenorphine, diprenorphine, etc. These compounds are promising for the structure-activity relationship studies among the thevinol/orvinol series as well as for a search for new OR ligands with potentially valuable pharmacological profiles.


Analgesics, Opioid , Analgesics , Mice , Animals , Analgesics, Opioid/pharmacology , Analgesics/pharmacology , Receptors, Opioid/agonists , Narcotic Antagonists/pharmacology , Structure-Activity Relationship , Ligands , Receptors, Opioid, mu/agonists
3.
Org Biomol Chem ; 21(7): 1440-1449, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36651056

A method is reported to control the stereoselectivity at C(20) in the syntheses of 20-R-21,21,21-trifluorothevinols (12), the opioid ligands incorporating fluorine atoms within the pharmacophore associated with the surroundings of the C(20) carbon atom. The C(20)-alcohols 12 can be prepared either by reaction of 21,21,21-trifluorothevinone (9) with RM (R = alkyl; M = Li, MgX) or by reaction of thevinone (2) and related non-fluorinated ketones with CF3SiMe3. In general, alcohols 12 were formed as mixtures of the C(20)-epimers, with the major epimers of the alcohols obtained from the aforementioned reactions exploiting RLi vs. CF3SiMe3 with opposite absolute configurations at C(20). Some individual C(20)-epimers of the fluorinated alcohols 12 were isolated from the reaction mixtures in pure form by trivial crystallization. The reactions of the ketones with RMgX (R ≠ Me) and RLi (R = tertiary or secondary alkyl) resulted in the reduction of the carbonyl function to produce the secondary alcohols 11a,b rather than the tertiary alcohols 12. The additives of the salts were found to affect the composition of the products in the reactions of 9 with alkyl organomagnesium and organolithium reagents.

4.
Org Biomol Chem ; 18(29): 5533-5557, 2020 07 29.
Article En | MEDLINE | ID: mdl-32672314

It is well documented in the literature that opioid receptors modulate a large number of physiological functions (pain perception, breathing, mood, gastrointestinal motility, etc.). Natural opiates and 4,5α-epoxymorphinan derivatives obtained by their chemical modifications, which are frequently referred to as semi-synthetic opioids, are among the most important types of opioid ligands. On the other hand, fluorinated compounds have a remarkable record in medicinal chemistry providing developmental candidates for therapeutic applications. The reasons are very similar steric impacts of hydrogen and fluorine along with the influence of substituting fluorine for hydrogen in the molecules of exogenous compounds on their lipophilicity, metabolism, conformation and other properties. This review focuses on the functionalization of 4,5α-epoxymorphinans and their derivatives via substitutions with fluorine or fluorine-containing groups in the search for improved pharmacological profile opioid ligands and 18F-containing opioid receptor radioligands for PET. These functionalizations are typically associated with substituents either at the C(3)-O, C(6)-O, and N(17) positions of the 4,5α-epoxymorphinan core or at C(7) in the thebaine based Diels-Alder type adducts. The syntheses resulted in the preparation of both single fluorinated derivatives or short sets of fluorinated derivatives and the families of fluorine-containing opioids allowing, in principle, the structure-activity relationship studies.

...