Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
EMBO Mol Med ; 15(3): e16244, 2023 03 08.
Article En | MEDLINE | ID: mdl-36533294

Duchenne muscular dystrophy (DMD) is a progressive severe muscle-wasting disease caused by mutations in DMD, encoding dystrophin, that leads to loss of muscle function with cardiac/respiratory failure and premature death. Since dystrophic muscles are sensed by infiltrating inflammatory cells and gut microbial communities can cause immune dysregulation and metabolic syndrome, we sought to investigate whether intestinal bacteria support the muscle immune response in mdx dystrophic murine model. We highlighted a strong correlation between DMD disease features and the relative abundance of Prevotella. Furthermore, the absence of gut microbes through the generation of mdx germ-free animal model, as well as modulation of the microbial community structure by antibiotic treatment, influenced muscle immunity and fibrosis. Intestinal colonization of mdx mice with eubiotic microbiota was sufficient to reduce inflammation and improve muscle pathology and function. This work identifies a potential role for the gut microbiota in the pathogenesis of DMD.


Microbiota , Muscular Dystrophy, Duchenne , Animals , Mice , Dystrophin/genetics , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Dysbiosis , Muscular Dystrophy, Duchenne/genetics , Immune System/metabolism , Immune System/pathology , Disease Models, Animal
2.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article En | MEDLINE | ID: mdl-36498987

Muscle wasting is a major pathological feature observed in Duchenne muscular dystrophy (DMD) and is the result of the concerted effects of inflammation, oxidative stress and cell senescence. The inducible form of proteasome, or immunoproteasome (IP), is involved in all the above mentioned processes, regulating antigen presentation, cytokine production and immune cell response. IP inhibition has been previously shown to dampen the altered molecular, histological and functional features of 3-month-old mdx mice, the animal model for DMD. In this study, we described the role of ONX-0914, a selective inhibitor of the PSMB8 subunit of immunoproteasome, in ameliorating the pathological traits that could promote muscle wasting progression in older, 9-month-old mdx mice. ONX-0914 reduces the number of macrophages and effector memory T cells in muscle and spleen, while increasing the number of regulatory T cells. It modulates inflammatory markers both in skeletal and cardiac muscle, possibly counteracting heart remodeling and hypertrophy. Moreover, it buffers oxidative stress by improving mitochondrial efficiency. These changes ultimately lead to a marked decrease of fibrosis and, potentially, to more controlled myofiber degeneration/regeneration cycles. Therefore, ONX-0914 is a promising molecule that may slow down muscle mass loss, with relatively low side effects, in dystrophic patients with moderate to advanced disease.


Muscle, Skeletal , Muscular Dystrophy, Duchenne , Mice , Animals , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Myocardium/metabolism , Macrophages/metabolism , Disease Models, Animal
3.
Cells ; 10(11)2021 10 28.
Article En | MEDLINE | ID: mdl-34831140

Nutraceutical products possess various anti-inflammatory, antiarrhythmic, cardiotonic, and antioxidant pharmacological activities that could be useful in preventing oxidative damage, mainly induced by reactive oxygen species. Previously published data showed that a mixture of polyphenols and polyunsaturated fatty acids, mediate an antioxidative response in mdx mice, Duchenne muscular dystrophy animal model. Dystrophic muscles are characterized by low regenerative capacity, fibrosis, fiber necrosis, inflammatory process, altered autophagic flux and inadequate anti-oxidant response. FLAVOmega ß is a mixture of flavonoids and docosahexaenoic acid. In this study, we evaluated the role of these supplements in the amelioration of the pathological phenotype in dystrophic mice through in vitro and in vivo assays. FLAVOmega ß reduced inflammation and fibrosis, dampened reactive oxygen species production, and induced an oxidative metabolic switch of myofibers, with consequent increase of mitochondrial activity, vascularization, and fatigue resistance. Therefore, we propose FLAVOmega ß as food supplement suitable for preventing muscle weakness, delaying inflammatory milieu, and sustaining physical health in patients affected from DMD.


Fatty Acids, Omega-3/pharmacology , Flavonoids/pharmacology , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Myocardium/pathology , Animals , Autophagy/drug effects , Cardiomyopathy, Dilated/pathology , Cell Line , Cell Proliferation/drug effects , Disease Models, Animal , Down-Regulation/drug effects , Fatty Acids, Omega-3/administration & dosage , Fibrosis , Flavonoids/administration & dosage , Inflammation/pathology , Mice, Inbred C57BL , Mice, Inbred mdx , Myoblasts/drug effects , Myoblasts/metabolism , Oxidative Phosphorylation/drug effects , Phenotype , Reactive Oxygen Species/metabolism , Regeneration/drug effects
4.
Biomedicines ; 9(10)2021 Oct 11.
Article En | MEDLINE | ID: mdl-34680564

Growing evidence demonstrates the crosstalk between the immune system and the skeletal muscle in inflammatory muscle diseases and dystrophic conditions such as Duchenne Muscular Dystrophy (DMD), as well as during normal muscle regeneration. The rising of inflammation and the consequent activation of the immune system are hallmarks of DMD: several efforts identified the immune cells that invade skeletal muscle as CD4+ and CD8+ T cells, Tregs, macrophages, eosinophils and natural killer T cells. The severity of muscle injury and inflammation dictates the impairment of muscle regeneration and the successive replacement of myofibers with connective and adipose tissue. Since immune system activation was traditionally considered as a consequence of muscular wasting, we recently demonstrated a defect in central tolerance caused by thymus alteration and the presence of autoreactive T-lymphocytes in DMD. Although the study of innate and adaptive immune responses and their complex relationship in DMD attracted the interest of many researchers in the last years, the results are so far barely exhaustive and sometimes contradictory. In this review, we describe the most recent improvements in the knowledge of immune system involvement in DMD pathogenesis, leading to new opportunities from a clinical point-of-view.

...