Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 200: 106628, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111703

RESUMEN

Autism Spectrum Disorders (ASD) encompass a wide array of debilitating symptoms, including severe sensory deficits and abnormal language development. Sensory deficits early in development may lead to broader symptomatology in adolescents and adults. The mechanistic links between ASD risk genes, sensory processing and language impairment are unclear. There is also a sex bias in ASD diagnosis and symptomatology. The current study aims to identify the developmental trajectory and genotype- and sex-dependent differences in auditory sensitivity and temporal processing in a Pten-deletion (phosphatase and tensin homolog missing on chromosome 10) mouse model of ASD. Auditory temporal processing is crucial for speech recognition and language development and deficits will cause language impairments. However, very little is known about the development of temporal processing in ASD animal models, and if there are sex differences. To address this major gap, we recorded epidural electroencephalography (EEG) signals from the frontal (FC) and auditory (AC) cortex in developing and adult Nse-cre PTEN mice, in which Pten is deleted in specific cortical layers (layers III-V) (PTEN conditional knock-out (cKO). We quantified resting EEG spectral power distribution, auditory event related potentials (ERP) and temporal processing from awake and freely moving male and female mice. Temporal processing is measured using a gap-in-noise-ASSR (auditory steady state response) stimulus paradigm. The experimental manipulation of gap duration and modulation depth allows us to measure cortical entrainment to rapid gaps in sounds. Temporal processing was quantified using inter-trial phase clustering (ITPC) values that account for phase consistency across trials. The results show genotype differences in resting power distribution in PTEN cKO mice throughout development. Male and female cKO mice have significantly increased beta power but decreased high frequency oscillations in the AC and FC. Both male and female PTEN cKO mice show diminished ITPC in their gap-ASSR responses in the AC and FC compared to control mice. Overall, deficits become more prominent in adult (p60) mice, with cKO mice having significantly increased sound evoked power and decreased ITPC compared to controls. While both male and female cKO mice demonstrated severe temporal processing deficits across development, female cKO mice showed increased hypersensitivity compared to males, reflected as increased N1 and P2 amplitudes. These data identify a number of novel sensory processing deficits in a PTEN-ASD mouse model that are present from an early age. Abnormal temporal processing and hypersensitive responses may contribute to abnormal development of language function in ASD.

2.
J Comp Neurol ; 532(7): e25660, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39039998

RESUMEN

Lafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ∼6-7 months, and ∼12 months of age, malin-deficient mice ("KO") and wild-type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion, and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across the same timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference, and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age-dependent LB accumulation, gliosis, and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. However, in an in vitro assay of neocortical function, paroxysmal bursts of network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced postictal suppression of movement, feeding, and drinking behavior. Together, these results highlight the clinicopathologic dissociation in a mouse model of LD, where the accrual of LBs may latently modify cortical circuit function and seizure threshold without clinically meaningful changes in home-cage behavior. Our findings allude to a delay between LB accumulation and neurobehavioral decline in LD: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.


Asunto(s)
Conducta Animal , Enfermedad de Lafora , Ratones Noqueados , Ubiquitina-Proteína Ligasas , Animales , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Ratones , Conducta Animal/fisiología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Cuerpos de Inclusión/patología , Cuerpos de Inclusión/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Encéfalo/metabolismo , Encéfalo/patología
3.
Cell Rep ; 43(4): 114056, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38581678

RESUMEN

Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.


Asunto(s)
Trastorno Autístico , Modelos Animales de Enfermedad , Receptor alfa de Estrógeno , Ratones Noqueados , Neocórtex , Fosfohidrolasa PTEN , Receptor del Glutamato Metabotropico 5 , Animales , Femenino , Masculino , Ratones , Trastorno Autístico/metabolismo , Trastorno Autístico/fisiopatología , Trastorno Autístico/genética , Trastorno Autístico/patología , Receptor alfa de Estrógeno/metabolismo , Ratones Endogámicos C57BL , Neocórtex/metabolismo , Neocórtex/patología , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Células Piramidales/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Conducta Social
4.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-37609208

RESUMEN

Autism manifests differently in males and females and the brain mechanisms that mediate these sex-dependent differences are unknown. Here, we demonstrate that deletion of the ASD-risk gene, Pten, in neocortical pyramidal neurons (NSE Pten KO) results in robust hyperexcitability of local neocortical circuits in female, but not male, mice, observed as prolonged, spontaneous persistent activity states (UP states). Circuit hyperexcitability in NSE Pten KO mice is mediated by enhanced and/or altered signaling of metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) to ERK and protein synthesis selectively in Pten deleted female neurons. In support of this idea, Pten deleted Layer 5 cortical neurons have female-specific increases in mGluR5 and mGluR5-driven protein synthesis. In addition, mGluR5-ERα complexes are elevated in female cortex and genetic reduction of ERα in Pten KO cortical neurons rescues circuit excitability, protein synthesis and enlarged neurons selectively in females. Abnormal timing and hyperexcitability of neocortical circuits in female NSE Pten KO mice are associated with deficits in temporal processing of sensory stimuli and social behaviors as well as mGluR5-dependent seizures. Female-specific cortical hyperexcitability and mGluR5-dependent seizures are also observed in a human disease relevant mouse model, germline Pten +/- mice. Our results reveal molecular mechanisms by which sex and a high impact ASD-risk gene interact to affect brain function and behavior.

5.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745312

RESUMEN

Lafora Disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD, as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ~6-7 months and ~12 months of age, malin deficient mice ("KO") and wild type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age dependent LB accumulation, gliosis and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. Using an in vitro assay of neocortical function, paroxysmal increases in network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but were similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced post-ictal suppression of movement, feeding and drinking behavior. Together, these results highlight a stark clinicopathologic dissociation in a mouse model of LD, where LBs accrue substantially without clinically meaningful changes in overall wellbeing. Our findings allude to a delay between LB accumulation and neurobehavioral decline: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.

7.
Neurobiol Dis ; 182: 106136, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37120096

RESUMEN

Fragile X Messenger Ribonucleoprotein (FMRP) is necessary for experience-dependent, developmental synapse elimination and the loss of this process may underlie the excess dendritic spines and hyperconnectivity of cortical neurons in Fragile X Syndrome, a common inherited form of intellectual disability and autism. Little is known of the signaling pathways that regulate synapse elimination and if or how FMRP is regulated during this process. We have characterized a model of synapse elimination in CA1 neurons of organotypic hippocampal slice cultures that is induced by expression of the active transcription factor Myocyte Enhancer Factor 2 (MEF2) and relies on postsynaptic FMRP. MEF2-induced synapse elimination is deficient in Fmr1 KO CA1 neurons, and is rescued by acute (24 h), postsynaptic and cell autonomous reexpression of FMRP in CA1 neurons. FMRP is an RNA binding protein that suppresses mRNA translation. Derepression is induced by posttranslational mechanisms downstream of metabotropic glutamate receptor signaling. Dephosphorylation of FMRP at S499 triggers ubiquitination and degradation of FMRP which then relieves translation suppression and promotes synthesis of proteins encoded by target mRNAs. Whether this mechanism functions in synapse elimination is not known. Here we demonstrate that phosphorylation and dephosphorylation of FMRP at S499 are both necessary for synapse elimination as well as interaction of FMRP with its E3 ligase for FMRP, APC/Cdh1. Using a bimolecular ubiquitin-mediated fluorescence complementation (UbFC) assay, we demonstrate that MEF2 promotes ubiquitination of FMRP in CA1 neurons that relies on activity and interaction with APC/Cdh1. Our results suggest a model where MEF2 regulates posttranslational modifications of FMRP via APC/Cdh1 to regulate translation of proteins necessary for synapse elimination.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Animales , Ratones , Factores de Transcripción MEF2/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Fosforilación/genética , Sinapsis/metabolismo , Síndrome del Cromosoma X Frágil/genética , Ratones Noqueados
8.
Front Synaptic Neurosci ; 14: 926570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965782

RESUMEN

Calmodulin kinase-like vesicle-associated (CaMKv), a pseudokinase belonging to the Ca2+/calmodulin-dependent kinase family, is expressed predominantly in brain and neural tissue. It may function in synaptic strengthening during spatial learning by promoting the stabilization and enrichment of dendritic spines. At present, almost nothing is known regarding CaMKv structure and regulation. In this study we confirm prior proteomic analyses demonstrating that CaMKv is palmitoylated on Cys5. Wild-type CaMKv is enriched on the plasma membrane, but this enrichment is lost upon mutation of Cys5 to Ser. We further show that CaMKv interacts with another regulator of synaptic plasticity, Arc/Arg3.1, and that the interaction between these two proteins is weakened by mutation of the palmitoylated cysteine in CamKv.

9.
Mol Autism ; 11(1): 78, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33054857

RESUMEN

BACKGROUND: Mutations in TSC2 are the most common cause of tuberous sclerosis (TSC), a disorder with a high incidence of autism and intellectual disability. TSC2 regulates mRNA translation required for group 1 metabotropic glutamate receptor-dependent synaptic long-term depression (mGluR-LTD) and behavior, but the identity of mRNAs responsive to mGluR-LTD signaling is largely unknown. METHODS: We utilized Tsc2+/- mice as a mouse model of TSC and prepared hippocampal slices from these animals. We induced mGluR-LTD synaptic plasticity in slices and processed the samples for RNA-seq and ribosome profiling to identify differentially expressed genes in Tsc2+/- and following mGluR-LTD synaptic plasticity. RESULTS: Ribosome profiling reveals that in Tsc2+/- mouse hippocampal slices, the expression of several mRNAs was dysregulated: terminal oligopyrimidine (TOP)-containing mRNAs decreased, while FMRP-binding targets increased. Remarkably, we observed the opposite changes of FMRP binding targets in Fmr1-/y hippocampi. In wild-type hippocampus, induction of mGluR-LTD caused rapid changes in the steady-state levels of hundreds of mRNAs, many of which are FMRP targets. Moreover, mGluR-LTD failed to promote phosphorylation of eukaryotic elongation factor 2 (eEF2) in TSC mice, and chemically mimicking phospho-eEF2 with low cycloheximide enhances mGluR-LTD in TSC mice. CONCLUSION: These results suggest a molecular basis for bidirectional regulation of synaptic plasticity and behavior by TSC2 and FMRP. Our study also suggests that altered mGluR-regulated translation elongation contributes to impaired synaptic plasticity in Tsc2+/- mice.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal , Ribosomas/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/fisiopatología , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones Endogámicos C57BL , Factor 2 de Elongación Peptídica/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Secuencia de Oligopirimidina en la Región 5' Terminal del ARN/genética , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Cell Rep ; 30(13): 4459-4472.e6, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32234480

RESUMEN

Silencing of FMR1 and loss of its gene product, FMRP, results in fragile X syndrome (FXS). FMRP binds brain mRNAs and inhibits polypeptide elongation. Using ribosome profiling of the hippocampus, we find that ribosome footprint levels in Fmr1-deficient tissue mostly reflect changes in RNA abundance. Profiling over a time course of ribosome runoff in wild-type tissue reveals a wide range of ribosome translocation rates; on many mRNAs, the ribosomes are stalled. Sucrose gradient ultracentrifugation of hippocampal slices after ribosome runoff reveals that FMRP co-sediments with stalled ribosomes, and its loss results in decline of ribosome stalling on specific mRNAs. One such mRNA encodes SETD2, a lysine methyltransferase that catalyzes H3K36me3. Chromatin immunoprecipitation sequencing (ChIP-seq) demonstrates that loss of FMRP alters the deployment of this histone mark. H3K36me3 is associated with alternative pre-RNA processing, which we find occurs in an FMRP-dependent manner on transcripts linked to neural function and autism spectrum disorders.


Asunto(s)
Empalme Alternativo/genética , Trastorno Autístico/genética , Cromatina/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Neuronas/metabolismo , Ribosomas/metabolismo , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Histonas/metabolismo , Lisina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Polirribosomas/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Nucleic Acids Res ; 47(5): e25, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30590705

RESUMEN

Dysregulated protein synthesis is a major underlying cause of many neurodevelopmental diseases including fragile X syndrome. In order to capture subtle but biologically significant differences in translation in these disorders, a robust technique is required. One powerful tool to study translational control is ribosome profiling, which is based on deep sequencing of mRNA fragments protected from ribonuclease (RNase) digestion by ribosomes. However, this approach has been mainly applied to rapidly dividing cells where translation is active and large amounts of starting material are readily available. The application of ribosome profiling to low-input brain tissue where translation is modest and gene expression changes between genotypes are expected to be small has not been carefully evaluated. Using hippocampal tissue from wide type and fragile X mental retardation 1 (Fmr1) knockout mice, we show that variable RNase digestion can lead to significant sample batch effects. We also establish GC content and ribosome footprint length as quality control metrics for RNase digestion. We performed RNase titration experiments for low-input samples to identify optimal conditions for this critical step that is often improperly conducted. Our data reveal that optimal RNase digestion is essential to ensure high quality and reproducibility of ribosome profiling for low-input brain tissue.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Ribosomas/genética , Ribosomas/metabolismo , Animales , Secuencia de Bases , Femenino , Síndrome del Cromosoma X Frágil/metabolismo , Secuencia Rica en GC , Masculino , Ratones , Control de Calidad , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo
12.
J Neurodev Disord ; 9: 6, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28616095

RESUMEN

BACKGROUND: Fragile X Syndrome (FXS) occurs as a result of a silenced fragile X mental retardation 1 gene (FMR1) and subsequent loss of fragile X mental retardation protein (FMRP) expression. Loss of FMRP alters excitatory/inhibitory signaling balance, leading to increased neuronal hyperexcitability and altered behavior. Acamprosate (the calcium salt of N-acetylhomotaurinate), a drug FDA-approved for relapse prevention in the treatment of alcohol dependence in adults, is a novel agent with multiple mechanisms that may be beneficial for people with FXS. There are questions regarding the neuroactive effects of acamprosate and the significance of the molecule's calcium moiety. Therefore, the electrophysiological, cellular, molecular, and behavioral effects of acamprosate were assessed in the Fmr1-/y (knock out; KO) mouse model of FXS controlling for the calcium salt in several experiments. METHODS: Fmr1 KO mice and their wild-type (WT) littermates were utilized to assess acamprosate treatment on cortical UP state parameters, dendritic spine density, and seizure susceptibility. Brain extracellular-signal regulated kinase 1/2 (ERK1/2) activation was used to investigate this signaling molecule as a potential biomarker for treatment response. Additional adult mice were used to assess chronic acamprosate treatment and any potential effects of the calcium moiety using CaCl2 treatment on behavior and nuclear ERK1/2 activation. RESULTS: Acamprosate attenuated prolonged cortical UP state duration, decreased elevated ERK1/2 activation in brain tissue, and reduced nuclear ERK1/2 activation in the dentate gyrus in KO mice. Acamprosate treatment modified behavior in anxiety and locomotor tests in Fmr1 KO mice in which control-treated KO mice were shown to deviate from control-treated WT mice. Mice treated with CaCl2 were not different from saline-treated mice in the adult behavior battery or nuclear ERK1/2 activation. CONCLUSIONS: These data indicate that acamprosate, and not calcium, improves function reminiscent of reduced anxiety-like behavior and hyperactivity in Fmr1 KO mice and that acamprosate attenuates select electrophysiological and molecular dysregulation that may play a role in the pathophysiology of FXS. Differences between control-treated KO and WT mice were not evident in a recognition memory test or in examination of acoustic startle response/prepulse inhibition which impeded conclusions from being made about the treatment effects of acamprosate in these instances.

13.
Neuropharmacology ; 113(Pt A): 343-353, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27769854

RESUMEN

We studied the interaction between mGlu7 and α1-adrenergic receptors in heterologous expression systems, brain slices, and living animals. L-2-Amino-4-phosphonobutanoate (L-AP4), and l-serine-O-phosphate (L-SOP), which activate group III mGlu receptors, restrained the stimulation of polyphosphoinositide (PI) hydrolysis induced by the α1-adrenergic receptor agonist, phenylephrine, in HEK 293 cells co-expressing α1-adrenergic and mGlu7 receptors. The inibitory action of L-AP4 was abrogated by (i) the mGlu7 receptor antagonist, XAP044; (ii) the C-terminal portion of type-2 G protein coupled receptor kinase; and (iii) the MAP kinase inhibitors, UO126 and PD98059. This suggests that the functional interaction between mGlu7 and α1-adrenergic receptors was mediated by the ßγ-subunits of the Gi protein and required the activation of the MAP kinase pathway. Remarkably, activation of neither mGlu2 nor mGlu4 receptors reduced α1-adrenergic receptor-mediated PI hydrolysis. In mouse cortical slices, both L-AP4 and L-SOP were able to attenuate norepinephrine- and phenylephrine-stimulated PI hydrolysis at concentrations consistent with the activation of mGlu7 receptors. L-AP4 failed to affect norepinephrine-stimulated PI hydrolysis in cortical slices from mGlu7-/- mice, but retained its inhibitory activity in slices from mGlu4-/- mice. At behavioural level, i.c.v. injection of phenylephrine produced antidepressant-like effects in the forced swim test. The action of phenylephrine was attenuated by L-SOP, which was inactive per se. Finally, both phenylephrine and L-SOP increased corticosterone levels in mice, but the increase was halved when the two drugs were administered in combination. Our data demonstrate that α1-adrenergic and mGlu7 receptors functionally interact and suggest that this interaction might be targeted in the treatment of stress-related disorders.


Asunto(s)
Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/fisiología , Agonistas de Receptores Adrenérgicos alfa 1/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Células HEK293 , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glutamato Metabotrópico/agonistas , Transducción de Señal/efectos de los fármacos
14.
Elife ; 52016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27779093

RESUMEN

Numerous genetic variants associated with MEF2C are linked to autism, intellectual disability (ID) and schizophrenia (SCZ) - a heterogeneous collection of neurodevelopmental disorders with unclear pathophysiology. MEF2C is highly expressed in developing cortical excitatory neurons, but its role in their development remains unclear. We show here that conditional embryonic deletion of Mef2c in cortical and hippocampal excitatory neurons (Emx1-lineage) produces a dramatic reduction in cortical network activity in vivo, due in part to a dramatic increase in inhibitory and a decrease in excitatory synaptic transmission. In addition, we find that MEF2C regulates E/I synapse density predominantly as a cell-autonomous, transcriptional repressor. Analysis of differential gene expression in Mef2c mutant cortex identified a significant overlap with numerous synapse- and autism-linked genes, and the Mef2c mutant mice displayed numerous behaviors reminiscent of autism, ID and SCZ, suggesting that perturbing MEF2C function in neocortex can produce autistic- and ID-like behaviors in mice.


Asunto(s)
Conducta Animal , Trastornos del Neurodesarrollo/fisiopatología , Sinapsis/fisiología , Animales , Trastorno Autístico/fisiopatología , Corteza Cerebral/embriología , Técnicas de Silenciamiento del Gen , Hipocampo/embriología , Discapacidad Intelectual/fisiopatología , Factores de Transcripción MEF2/metabolismo , Ratones
15.
J Neurosci ; 36(7): 2131-47, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26888925

RESUMEN

Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5(R/R)) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5(R/R) mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. SIGNIFICANCE STATEMENT: Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical, neurophysiological, and behavioral symptoms observed in the fragile X mouse. This work provides strong evidence that Homer-mGlu5 binding contributes to symptoms associated with neurodevelopmental disorders.


Asunto(s)
Proteínas Portadoras/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Receptor del Glutamato Metabotropico 5/genética , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Técnicas de Sustitución del Gen , Proteínas de Andamiaje Homer , Técnicas In Vitro , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neocórtex/metabolismo , Fenotipo , Convulsiones/genética , Convulsiones/fisiopatología , Filtrado Sensorial
16.
Cell Rep ; 11(5): 681-8, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25921527

RESUMEN

Distinct isoforms of the PI3K catalytic subunit have specialized functions in the brain, but their role in cognition is unknown. Here, we show that the catalytic subunit p110ß plays an important role in prefrontal cortex (PFC)-dependent cognitive defects in mouse models of Fragile X syndrome (FXS), an inherited intellectual disability. FXS is caused by loss of function of the fragile X mental retardation protein (FMRP), which binds and translationally represses mRNAs. PFC-selective knockdown of p110ß, an FMRP target that is translationally upregulated in FXS, reverses deficits in higher cognition in Fmr1 knockout mice. Genetic full-body reduction of p110ß in Fmr1 knockout mice normalizes excessive PI3K activity, restores stimulus-induced protein synthesis, and corrects increased dendritic spine density and behavior. Notably, adult-onset PFC-selective Fmr1 knockdown mice show impaired cognition, which is rescued by simultaneous p110ß knockdown. Our results suggest that FMRP-mediated control of p110ß is crucial for neuronal protein synthesis and cognition.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Cognición/fisiología , Síndrome del Cromosoma X Frágil/patología , Animales , Conducta Animal , Fosfatidilinositol 3-Quinasa Clase Ia/química , Espinas Dendríticas/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Masculino , Ratones , Ratones Noqueados , Corteza Prefrontal/metabolismo , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Receptor del Glutamato Metabotropico 5/metabolismo
17.
Neuropharmacology ; 95: 50-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25747602

RESUMEN

Neuroadaptive changes involving the indirect pathway of the basal ganglia motor circuit occur in the early phases of parkinsonism. The precise identification of these changes may shed new light into the pathophysiology of parkinsonism and better define the time window of pharmacological intervention. We examined some of these changes in mice challenged with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), or with the dopamine receptor blocker, haloperidol. These two models clearly diverge from Parkinson's disease (PD); however, they allow an accurate time-dependent analysis of neuroadaptive changes occurring in the striatum. Acute haloperidol injection caused a significant increase in the transcripts of mGlu4 receptors, CB1 receptors and preproenkephalin-A at 2 and 24 h, and a reduction in the transcripts of mGlu5 and A2A receptors at 2 h. At least changes in the expression of mGlu4 receptors might be interpreted as compensatory because haloperidol-induced catalepsy was enhanced in mGlu4(-/-) mice. Mice injected with 30 mg/kg of MPTP also showed an increase in the transcripts of mGlu4 receptors, CB1 receptors, and preproenkephalin-A at 3 d, and a reduction of the transcript of A2A receptors at 1 d in the striatum. Genetic deletion of mGlu4 receptors altered the functional response to MPTP, assessed by counting c-Fos(+) neurons in the external globus pallidus and ventromedial thalamic nucleus. These findings offer the first evidence that changes in the expression of mGlu4 and mGlu5 receptors occur in acute models of parkinsonisms, and lay the groundwork for the study of these changes in models that better recapitulate the temporal profile of nigrostriatal dysfunction associated with PD.


Asunto(s)
Cuerpo Estriado/metabolismo , Trastornos Parkinsonianos/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Enfermedad Aguda , Animales , Catalepsia/metabolismo , Catalepsia/patología , Encefalinas/metabolismo , Haloperidol , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Trastornos Parkinsonianos/patología , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Adenosina A2/metabolismo , Receptores de Glutamato Metabotrópico/genética , Factores de Tiempo , Núcleos Talámicos Ventrales/metabolismo
18.
Neurobiol Dis ; 74: 126-36, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25434487

RESUMEN

Enhancement of glial-derived neurotrophic factor (GDNF) is an established therapeutic target for amyotrophic lateral sclerosis (ALS). Activation of group II metabotropic glutamate (mGlu) receptors with the orthosteric agonist, LY379268, enhanced GDNF levels in cultured spinal cord astrocytes from wild-type mice and mGlu2(-/-) mice, but not in astrocytes from mGlu3(-/-) mice. LY379268 protected Sternberger monoclonal incorporated antibody-32 (SMI-32)(+) motor neurons against excitotoxic death in mixed cultures of spinal cord cells, and its action was abrogated by anti-GDNF antibodies. Acute systemic injection of LY379268 (0.5, 1 or 5mg/kg, i.p.) enhanced spinal cord GDNF levels in wild-type and mGlu2(-/-) mice, but not in mGlu3(-/-) mice. No tolerance developed to the GDNF-enhancing effect of LY379268 when the drug was continuously delivered for 28days by means of s.c. osmotic minipumps (0.5-5mg/day). Double fluorescent immunostaining showed a co-localization of GDNF with the astrocyte marker, GFAP, but not with the neuronal marker, Neuronal Nuclear Antigen (NeuN), or with SMI-32. Continuous infusion of LY379268 also enhanced the expression of the glutamate transporter GLT-1, in the spinal cord. These data laid the groundwork for the study of LY379268 in ALS mice. Continuous treatment with 1 or 5mg/kg/day with LY379268 had a beneficial effect on neurological disability in SOD1G93A mice. At day 40 of treatment, LY379268 enhanced spinal cord levels of GDNF and GLT-1, and rescued spinal cord motor neurons, as assessed by stereologic counting of SMI-32(+) cells. LY379268 had no significant effect on the mortality rate of SODG93A. These findings encourage the development of selective mGlu3 receptor agonists/enhancers as neuroprotective agents in ALS.


Asunto(s)
Aminoácidos/farmacología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Transportador 2 de Aminoácidos Excitadores/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Neuronas Motoras/efectos de los fármacos , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Astrocitos/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
19.
Neuropharmacology ; 86: 133-44, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25063582

RESUMEN

LY379268 and LY354740, two agonists of mGlu2/3 metabotropic glutamate receptors, display different potencies in mouse models of schizophrenia. This differential effect of the two drugs remains unexplained. We performed a proteomic analysis in cultured cortical neurons challenged with either LY379268 or LY354740. Among the few proteins that were differentially influenced by the two drugs, Rab GDP dissociation inhibitor-ß (Rab GDIß) was down-regulated by LY379268 and showed a trend to an up-regulation in response to LY354740. In cultured hippocampal neurons, LY379268 selectively down-regulated the α isoform of Rab GDI. Rab GDI inhibits the activity of the synaptic vesicle-associated protein, Rab3A, and is reduced in the brain of schizophrenic patients. We examined the expression of Rab GDI in mice exposed to prenatal stress ("PRS mice"), which have been described as a putative model of schizophrenia. Rab GDIα protein levels were increased in the hippocampus of PRS mice at postnatal days (PND)1 and 21, but not at PND60. At PND21, PRS mice also showed a reduced depolarization-evoked [(3)H]d-aspartate release in hippocampal synaptosomes. The increase in Rab GDIα levels in the hippocampus of PRS mice was reversed by a 7-days treatment with LY379268 (1 or 10 mg/kg, i.p.), but not by treatment with equal doses of LY354740. These data strengthen the validity of PRS mice as a model of schizophrenia, and show for the first time a pharmacodynamic difference between LY379268 and LY354740 which might be taken into account in an attempt to explain the differential effect of the two drugs across mouse models.


Asunto(s)
Aminoácidos/farmacología , Antipsicóticos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Animales , Células Cultivadas , Ácido D-Aspártico/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Masculino , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal , Proteómica/métodos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Restricción Física
20.
J Neurosci ; 34(13): 4558-66, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24672001

RESUMEN

Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3A(m-/p+) mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS.


Asunto(s)
Síndrome de Angelman/genética , Síndrome de Angelman/patología , Proteínas Portadoras/metabolismo , Hipocampo/fisiopatología , Depresión Sináptica a Largo Plazo/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hemicigoto , Hipocampo/patología , Proteínas de Andamiaje Homer , Inmunosupresores/farmacología , Técnicas In Vitro , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA