Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Ecol Evol ; 24(1): 56, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702598

RESUMEN

BACKGROUND: Despite its implications for population dynamics and evolution, the relationship between genetic and phenotypic variation in wild populations remains unclear. Here, we estimated variation and plasticity in life-history traits and fitness of the annual plant Arabidopsis thaliana in two common garden experiments that differed in environmental conditions. We used up to 306 maternal inbred lines from six Iberian populations characterized by low and high genotypic (based on whole-genome sequences) and ecological (vegetation type) diversity. RESULTS: Low and high genotypic and ecological diversity was found in edge and core Iberian environments, respectively. Given that selection is expected to be stronger in edge environments and that ecological diversity may enhance both phenotypic variation and plasticity, we expected genotypic diversity to be positively associated with phenotypic variation and plasticity. However, maternal lines, irrespective of the genotypic and ecological diversity of their population of origin, exhibited a substantial amount of phenotypic variation and plasticity for all traits. Furthermore, all populations harbored maternal lines with canalization (robustness) or sensitivity in response to harsher environmental conditions in one of the two experiments. CONCLUSIONS: Overall, we conclude that the environmental attributes of each population probably determine their genotypic diversity, but all populations maintain substantial phenotypic variation and plasticity for all traits, which represents an asset to endure in changing environments.


Asunto(s)
Arabidopsis , Aptitud Genética , Genotipo , Rasgos de la Historia de Vida , Arabidopsis/genética , Arabidopsis/fisiología , España , Variación Genética , Fenotipo , Variación Biológica Poblacional
2.
Plant Cell ; 36(1): 85-111, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37683092

RESUMEN

Long noncoding RNAs (lncRNAs) are understudied and underannotated in plants. In mammals, lncRNA loci are nearly as ubiquitous as protein-coding genes, and their expression is highly variable between individuals of the same species. Using Arabidopsis thaliana as a model, we aimed to elucidate the true scope of lncRNA transcription across plants from different regions and study its natural variation. We used transcriptome deep sequencing data sets spanning hundreds of natural accessions and several developmental stages to create a population-wide annotation of lncRNAs, revealing thousands of previously unannotated lncRNA loci. While lncRNA transcription is ubiquitous in the genome, most loci appear to be actively silenced and their expression is extremely variable between natural accessions. This high expression variability is largely caused by the high variability of repressive chromatin levels at lncRNA loci. High variability was particularly common for intergenic lncRNAs (lincRNAs), where pieces of transposable elements (TEs) present in 50% of these lincRNA loci are associated with increased silencing and variation, and such lncRNAs tend to be targeted by the TE silencing machinery. We created a population-wide lncRNA annotation in Arabidopsis and improve our understanding of plant lncRNA genome biology, raising fundamental questions about what causes transcription and silencing across the genome.


Asunto(s)
Arabidopsis , ARN Largo no Codificante , Humanos , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Elementos Transponibles de ADN/genética , Transcriptoma/genética , Genoma de Planta/genética , Mamíferos/genética , Mamíferos/metabolismo
3.
PLoS Genet ; 19(5): e1010728, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141384

RESUMEN

Gene-body methylation (gbM) refers to sparse CG methylation of coding regions, which is especially prominent in evolutionarily conserved house-keeping genes. It is found in both plants and animals, but is directly and stably (epigenetically) inherited over multiple generations in the former. Studies in Arabidopsis thaliana have demonstrated that plants originating from different parts of the world exhibit genome-wide differences in gbM, which could reflect direct selection on gbM, but which could also reflect an epigenetic memory of ancestral genetic and/or environmental factors. Here we look for evidence of such factors in F2 plants resulting from a cross between a southern Swedish line with low gbM and a northern Swedish line with high gbM, grown at two different temperatures. Using bisulfite-sequencing data with nucleotide-level resolution on hundreds of individuals, we confirm that CG sites are either methylated (nearly 100% methylation across sampled cells) or unmethylated (approximately 0% methylation across sampled cells), and show that the higher level of gbM in the northern line is due to more sites being methylated. Furthermore, methylation variants almost always show Mendelian segregation, consistent with their being directly and stably inherited through meiosis. To explore how the differences between the parental lines could have arisen, we focused on somatic deviations from the inherited state, distinguishing between gains (relative to the inherited 0% methylation) and losses (relative to the inherited 100% methylation) at each site in the F2 generation. We demonstrate that deviations predominantly affect sites that differ between the parental lines, consistent with these sites being more mutable. Gains and losses behave very differently in terms of the genomic distribution, and are influenced by the local chromatin state. We find clear evidence for different trans-acting genetic polymorphism affecting gains and losses, with those affecting gains showing strong environmental interactions (G×E). Direct effects of the environment were minimal. In conclusion, we show that genetic and environmental factors can change gbM at a cellular level, and hypothesize that these factors can also lead to transgenerational differences between individuals via the inclusion of such changes in the zygote. If true, this could explain genographic pattern of gbM with selection, and would cast doubt on estimates of epimutation rates from inbred lines in constant environments.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Metilación de ADN/genética , Epigénesis Genética , Genes de Plantas , Genómica/métodos
4.
Plant Biotechnol J ; 21(2): 317-330, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36209479

RESUMEN

Duckweeds are amongst the fastest growing of higher plants, making them attractive high-biomass targets for biofuel feedstock production. Their fronds have high rates of fatty acid synthesis to meet the demand for new membranes, but triacylglycerols (TAG) only accumulate to very low levels. Here we report on the engineering of Lemna japonica for the synthesis and accumulation of TAG in its fronds. This was achieved by expression of an estradiol-inducible cyan fluorescent protein-Arabidopsis WRINKLED1 fusion protein (CFP-AtWRI1), strong constitutive expression of a mouse diacylglycerol:acyl-CoA acyltransferase2 (MmDGAT), and a sesame oleosin variant (SiOLE(*)). Individual expression of each gene increased TAG accumulation by 1- to 7-fold relative to controls, while expression of pairs of these genes increased TAG by 7- to 45-fold. In uninduced transgenics containing all three genes, TAG accumulation increased by 45-fold to 3.6% of dry weight (DW) without severely impacting growth, and by 108-fold to 8.7% of DW after incubation on medium containing 100 µm estradiol for 4 days. TAG accumulation was accompanied by an increase in total fatty acids of up to three-fold to approximately 15% of DW. Lipid droplets from fronds of all transgenic lines were visible by confocal microscopy of BODIPY-stained fronds. At a conservative 12 tonnes (dry matter) per acre and 10% (DW) TAG, duckweed could produce 350 gallons of oil/acre/year, approximately seven-fold the yield of soybean, and similar to that of oil palm. These findings provide the foundation for optimizing TAG accumulation in duckweed and present a new opportunity for producing biofuels and lipidic bioproducts.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Araceae , Animales , Ratones , Triglicéridos/metabolismo , Lípidos , Ácidos Grasos/metabolismo , Arabidopsis/genética , Araceae/genética , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética
5.
Plant Cell ; 31(6): 1222-1237, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30992321

RESUMEN

Understanding how plants adapt to ambient temperatures has become a major challenge prompted by global climate change. This has led to the identification of several genes regulating the thermal plasticity of plant growth and flowering time. However, the mechanisms accounting for the natural variation and evolution of such developmental plasticity remain mostly unknown. In this study, we determined that natural variation at ICARUS2 (ICA2), which interacts genetically with its homolog ICA1, alters growth and flowering time plasticity in relation to temperature in Arabidopsis (Arabidopsis thaliana). Transgenic analyses demonstrated multiple functional effects for ICA2 and supported the notion that structural polymorphisms in ICA2 likely underlie its natural variation. Two major ICA2 haplogroups carrying distinct functionally active alleles showed high frequency, strong geographic structure, and significant associations with climatic variables related to annual and daily fluctuations in temperature. Genome analyses across the plant phylogeny indicated that the prevalent plant ICA genes encoding two tRNAHis guanylyl transferase 1 units evolved ∼120 million years ago during the early divergence of mono- and dicotyledonous clades. In addition, ICA1/ICA2 duplication occurred specifically in the Camelineae tribe (Brassicaceae). Thus, ICA2 appears to be ubiquitous across plant evolution and likely contributes to climate adaptation through modifications of thermal developmental plasticity in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nucleotidiltransferasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Nucleotidiltransferasas/genética , Temperatura
6.
Plant J ; 65(5): 724-36, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21251100

RESUMEN

In Arabidopsis thaliana, mutations in genes encoding ribosomal proteins (r-proteins) perturb various developmental processes. Whether these perturbations are caused by overall ribosome insufficiency or partial dysfunction of the ribosome caused by deficiency of a particular ribosomal protein is not known. To distinguish these possibilities, a comparative study using several r-protein mutants was required. Here, we identified mutations in 11 r-protein genes from previously isolated denticulata and pointed-leaves mutants. Most of these mutations were associated with pointed leaves, with reduced growth due to a decrease in the number or size of palisade mesophyll and pavement cells. In addition, leaf abaxialization was usually observed when these r-protein mutations were combined with asymmetric leaves1 (as1) and as2 mutations. These results suggest that the establishment of leaf polarity is highly sensitive to ribosome functionality in general. However, several r-protein mutants showed a preference towards a specific developmental defect. For example, rpl4d mutations did not affect cell proliferation but caused strong abaxialization of leaves in the as1 and as2 backgrounds. On the other hand, rps28b enhanced leaf abaxialization of as2 to a weaker extent than expected on the basis of its negative effect on cell proliferation. In addition, hypomorphic rps6a alleles had the strongest effects on most of the phenotypes examined. These findings suggest that deficiencies in these three r-protein genes lead to production of dysfunctional ribosomes. Depending on their structural abnormalities, dysfunctional ribosomes may affect translation of specific transcripts involved in the regulation of some leaf developmental processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Microscopía Electrónica de Rastreo , Mutación , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/ultraestructura , Ploidias , ARN de Planta/genética , Proteínas Ribosómicas/genética , Ribosomas/genética
7.
Plant J ; 65(3): 335-45, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21265888

RESUMEN

Arabidopsis thaliana reticulate mutants exhibit differential pigmentation of the veinal and interveinal leaf regions, a visible phenotype that often indicates impaired mesophyll development. We performed a metabolomic analysis of one ven6 (venosa6) and three ven3 reticulate mutants that revealed altered levels of arginine precursors, namely increased ornithine and reduced citrulline levels. In addition, the mutants were more sensitive than the wild-type to exogenous ornithine, and leaf reticulation and mesophyll defects of these mutants were completely rescued by exogenous citrulline. Taken together, these results indicate that ven3 and ven6 mutants experience a blockage of the conversion of ornithine into citrulline in the arginine pathway. Consistent with the participation of VEN3 and VEN6 in the same pathway, the morphological phenotype of ven3 ven6 double mutants was synergistic. Map-based cloning showed that the VEN3 and VEN6 genes encode subunits of Arabidopsis carbamoyl phosphate synthetase (CPS), which is assumed to be required for the conversion of ornithine into citrulline in arginine biosynthesis. Heterologous expression of the Arabidopsis VEN3 and VEN6 genes in a CPS-deficient Escherichia coli strain fully restored bacterial growth in minimal medium, demonstrating the enzymatic activity of the VEN3 and VEN6 proteins, and indicating a conserved role for CPS in these distinct and distant species. Detailed study of the reticulate leaf phenotype in the ven3 and ven6 mutants revealed that mesophyll development is highly sensitive to impaired arginine biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arginina/biosíntesis , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Mutación , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arginina/farmacología , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Citrulina/genética , Citrulina/metabolismo , Citrulina/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Metanosulfonato de Etilo/farmacología , Células del Mesófilo/metabolismo , Metabolómica , Datos de Secuencia Molecular , Morfogénesis/genética , Ornitina/genética , Ornitina/metabolismo , Ornitina/farmacología , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Alineación de Secuencia
8.
Protein Eng Des Sel ; 21(12): 709-20, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18840883

RESUMEN

The C-LytA protein constitutes the choline-binding module of the LytA amidase from Streptococcus pneumoniae. Owing to its affinity for choline and analogs, it is regularly used as an affinity tag for the purification of proteins in a single chromatographic step. In an attempt to build a robust variant against thermal denaturation, we have engineered several salt bridges on the protein surface. All the stabilizing mutations were pooled in a single variant, C-LytAm7, which contained seven changes: Y25K, F27K, M33E, N51K, S52K, T85K and T108K. The mutant displays a 7 degrees C thermal stabilization compared with the wild-type form, together with a complete reversibility upon heating and a higher kinetic stability. Moreover, the accumulation of intermediates in the unfolding of C-LytA is virtually abolished for C-LytAm7. The differences in stability become more evident when the proteins are bound to a DEAE-cellulose affinity column, as most of wild-type C-LytA is denatured at approximately 65 degrees C, whereas C-LytAm7 may stand temperatures up to 90 degrees C. Finally, the change in the isoelectric point of C-LytAm7 enhances its solubility at acidic pHs. Therefore, C-LytAm7 behaves as an improved affinity tag and supports the engineering of surface salt bridges as an effective approach for protein stabilization.


Asunto(s)
Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Ingeniería de Proteínas , Streptococcus pneumoniae/enzimología , Amidohidrolasas/química , Biotecnología , Colina/metabolismo , Concentración de Iones de Hidrógeno , Proteínas Inmovilizadas/metabolismo , Proteínas Mutantes/metabolismo , Mutación , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Desnaturalización Proteica , Pliegue de Proteína , Estabilidad Proteica , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...