Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 10: 886522, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910737

RESUMEN

The lack of organic non-fullerene ETMs with good electron transport and device stability is an important problem for the further development and commercialization of perovskite solar cells. Herein, the use of SubPcs as ETMs in PSCs is explored. To this end, we analyze the influence of SubPc peripheral functionalization on the efficiency and stability of p-i-n PSCs. Specifically, ETMs based on three SubPcs (with either six or twelve peripheral fluorine and chlorine atoms) have been incorporated into PSCs with the perovskite layer deposited by solution processing (CsFAMAPbIBr). The device performance and morphology of these devices are deeply analyzed using several techniques, and the interfacial effects induced by the SubPcs are studied using photoluminescence and TR-PL. It is observed that the device stability is significantly improved upon insertion the SubPc layer. Moreover, the impact of the SubPc layer-thickness is assessed. Thus, a maximum power conversion efficiency of 13.6% was achieved with the champion device.

2.
ACS Appl Mater Interfaces ; 14(19): 22053-22060, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35512181

RESUMEN

Triarylamine end-capped-functionalized arylene-imidazole derivatives were synthesized from readily accessible, inexpensive precursors and employed as hole transporting materials (HTMs) in perovskite solar cells (PSCs). All the HTMs displayed high thermal decomposition temperatures (>410 °C), which is beneficial for realizing stable PSC devices. In addition, the new HTMs show appropriate energy level alignment with the perovskite layer, ensuring efficient hole transfer from perovskites to HTMs. Interestingly, PSCs fabricated with the triarylamine-functionalized imidazolyl-capped bithiophene molecule (DImBT-4D) as the HTM exhibited the best power conversion efficiency of 20.11%, comparable to that of the benchmark HTM spiro-OMeTAD, prompting it be a prospective candidate for large-scale PSC applications.

3.
ACS Appl Mater Interfaces ; 13(44): 52450-52460, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34704729

RESUMEN

Hybrid lead halide perovskites have reached comparable efficiencies to state-of-the-art silicon solar cell technologies. However, a remaining key challenge toward commercialization is the resolution of the perovskite device instability. In this work, we identify for the first time the mobile nature of bis(trifluoromethanesulfonyl)imide (TFSI-), a typical anion extensively employed in p-type dopants for 2,2'7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'spirofluorene (spiro-OMeTAD). We demonstrate that TFSI- can migrate through the perovskite layer via the grain boundaries and accumulate at the perovskite/electron-transporting layer (ETL) interface. Our findings reveal that the migration of TFSI- enhances the device performance and stability, resulting in highly stable p-i-n cells that retain 90% of their initial performance after 1600 h of continuous testing. Our systematic study, which targeted the effect of the nature of the dopant and its concentration, also shows that TFSI- acts as a dynamic defect-healing agent, which self-passivates the perovskite crystal defects during the migration process and thereby decreases nonradiative recombination pathways.

4.
Chem Mater ; 33(15): 6059-6067, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34475636

RESUMEN

To attain commercial viability, perovskite solar cells (PSCs) have to be reasonably priced, highly efficient, and stable for a long period of time. Although a new record of a certified power conversion efficiency (PCE) value over 25% was achieved, PSC performance is limited by the lack of hole-transporting materials (HTMs), which extract positive charges from the light-absorbing perovskite layer and carry them to the electrode. Here, we report spirobifluorene-based HTMs with finely tuned energy levels, high glass-transition temperature, and excellent charge mobility and conductivity enabled by molecularly engineered enamine arms. HTMs are synthesized using simple condensation chemistry, which does not require costly catalysts, inert reaction conditions, and time-consuming product purification procedures. Enamine-derived HTMs allow the fabrication of PSCs reaching a maximum PCE of 19.2% and stability comparable to spiro-OMeTAD. This work demonstrates that simple enamine condensation reactions could be used as a universal path to obtain HTMs for highly efficient and stable PSCs.

5.
Chempluschem ; 86(7): 1006-1013, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34260160

RESUMEN

Two novel and simple donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) containing two units of the p-methoxytriphenylamine (TPA) electron donor group covalently bridged by means of the 3,4-dimethoxyselenophene spacer through single and triple bonds are reported. The optoelectronic and thermal properties of the new selenium-containing HTMs have been determined using standard experimental techniques and theoretical density functional theory (DFT) calculations. The selenium-based HTMs have been incorporated in mesoporous perovskite solar cells (PSCs) in combination with the triple-cation perovskite [(FAPbI3 )0.87 (MAPbBr3 )0.13 ]0.92 [CsPbI3 ]0.08 . Limited values of power conversion efficiencies, up to 13.4 %, in comparison with the archetype spiro-OMeTAD (17.8 %), were obtained. The reduced efficiencies showed by the new HTMs are attributed to their poor film-forming ability, which constrains their photovoltaic performance due to the appearance of structural defects (pinholes).

6.
Sci Rep ; 10(1): 10640, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606325

RESUMEN

The most studied perovskite-based solar cells reported up to date contain the toxic lead in its composition. Photovoltaic research and development towards non-toxic, lead-free perovskite solar cells are critical to finding alternatives to reduce human health concerns associated with them. Bismuth-based perovskite variants, especially in the form of methylammonium bismuth iodide (MBI), is a good candidate for the non-toxic light absorber. However, the reported perovskite variant MBI thin films prepared by the solution process so far suffers from poor morphology and surface coverage. In this work, we investigate for the first time the optoelectronic, crystallographic and morphological properties of MBI thin films prepared via thermal co-evaporation of MAI and BiI3. We find by modifying the precursor ratio that the layer with pure MBI composition lead to uniform, compact and homogeneous layers, broadening the options of deposition techniques for lead-free based perovskite solar cells.

7.
Chemistry ; 26(48): 11039-11047, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32608525

RESUMEN

Three novel donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) featuring triazatruxene electron-donating units bridged by different 3,4-ethylenedioxythiophene (EDOT) π-conjugated linkers have been synthesized, characterized, and implemented in mesoporous perovskite solar cells (PSCs). The optoelectronic properties of the new dumbbell-shaped derivatives (DTTXs) are highly influenced by the chemical structure of the EDOT-based linker. Red-shifted absorption and emission and a stronger donor ability were observed in passing from DTTX-1 to DTTX-2 due to the extended π-conjugation. DTTX-3 featured an intramolecular charge transfer between the external triazatruxene units and the azomethine-EDOT central scaffold, resulting in a more pronounced redshift. The three new derivatives have been tested in combination with the state-of-the-art triple-cation perovskite [(FAPbI3 )0.87 (MAPbBr3 )0.13 ]0.92 [CsPbI3 ]0.08 in standard mesoporous PSCs. Remarkable power conversion efficiencies of 17.48 % and 18.30 % were measured for DTTX-1 and DTTX-2, respectively, close to that measured for the benchmarking HTM spiro-OMeTAD (18.92 %), under 100 mA cm-2 AM 1.5G solar illumination. PSCs with DTTX-3 reached a PCE value of 12.68 %, which is attributed to the poorer film formation in comparison to DTTX-1 and DTTX-2. These PCE values are in perfect agreement with the conductivity and hole mobility values determined for the new compounds and spiro-OMeTAD. Steady-state photoluminescence further confirmed the potential of DTTX-1 and DTTX-2 for hole-transport applications as an alternative to spiro-OMeTAD.

8.
Angew Chem Int Ed Engl ; 58(33): 11266-11272, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31165529

RESUMEN

The synthesis of three enamine hole-transporting materials (HTMs) based on Tröger's base scaffold are reported. These compounds are obtained in a three-step facile synthesis from commercially available materials without the need of expensive catalysts, inert conditions or time-consuming purification steps. The best performing material, HTM3, demonstrated 18.62 % PCE in PSCs, rivaling spiro-OMeTAD in efficiency, and showing markedly superior long-term stability in non-encapsulated devices. In dopant-free PSCs, HTM3 outperformed spiro-OMeTAD by a factror of 1.6. The high glass-transition temperature (Tg =176 °C) of HTM3 also suggests promising perspectives in device applications.

9.
Dalton Trans ; 48(1): 30-34, 2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30431035

RESUMEN

Efficient perovskite devices consist of a perovskite film sandwiched between charge selective layers, in order to avoid non-radiative recombination. A common metal oxide used as a p-type or hole transport layer is molybdenum oxide. MoO3 is of particular interest for its very large work function, which allows it to be used both as an interfacial charge transfer material and a dopant for organic semiconductors. However, high quality and high work function MoO3 is typically thermally evaporated in a vacuum. An alternative solution-processable high work function material is phosphomolybdic acid (PMA), which is stable, commercially available and environmentally friendly. In this Communication, we show the first application of PMA in efficient vacuum processed perovskite devices. We found that the direct growth of perovskite films onto PMA leads to strong charge carrier recombination, hindering the solar cell photovoltage. Using an energetically suitable selective transport layer placed between PMA and the perovskite film, solar cells with efficiency >13% as well as LEDs with promising quantum efficiency can be obtained.

10.
Inorg Chem ; 56(17): 10298-10310, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28836770

RESUMEN

A series of bis-cyclometalated iridium(III) complexes of general formula [Ir(ppy)2(N∧N)][PF6] (ppy- = 2-phenylpyridinate; N∧N = 2-(1H-imidazol-2-yl)pyridine (1), 2-(2-pyridyl)benzimidazole (2), 1-methyl-2-pyridin-2-yl-1H-benzimidazole (3), 2-(4'-thiazolyl)benzimidazole (4), 1-methyl-2-(4'-thiazolyl)benzimidazole (5)) is reported, and their use as electroluminescent materials in light-emitting electrochemical cell (LEC) devices is investigated. [2][PF6] and [3][PF6] are orange emitters with intense unstructured emission around 590 nm in acetonitrile solution. [1][PF6], [4][PF6], and [5][PF6] are green weak emitters with structured emission bands peaking around 500 nm. The different photophysical properties are due to the effect that the chemical structure of the ancillary ligand has on the nature of the emitting triplet state. Whereas the benzimidazole unit stabilizes the LUMO and gives rise to a 3MLCT/3LLCT emitting triplet in [2][PF6] and [3][PF6], the presence of the thiazolyl ring produces the opposite effect in [4][PF6] and [5][PF6] and the emitting state has a predominant 3LC character. Complexes with 3MLCT/3LLCT emitting triplets give rise to LEC devices with luminance values 1 order higher than those of complexes with 3LC emitting states. Protecting the imidazole N-H bond with a methyl group, as in complexes [3][PF6] and [5][PF6], shows that the emissive properties become more stable. [3][PF6] leads to outstanding LECs with simultaneously high luminance (904 cd m-2), efficiency (9.15 cd A-1), and stability (lifetime over 2500 h).

11.
ACS Energy Lett ; 2(5): 1214-1222, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28540366

RESUMEN

Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p-i-n and n-i-p CH3NH3PbI3 solar cells, including the light intensity dependence of the open-circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain boundaries (GBs), their neutral (when filled with photogenerated charges) disposition along with the long-lived nature of holes leads to the high performance of PSCs. The sign of the traps (when filled) is of little importance in efficient solar cells with compact morphologies (fused GBs, low trap density). On the other hand, solar cells with noncompact morphologies (open GBs, high trap density) are sensitive to the sign of the traps and hence to the cell preparation methods. Even in the presence of traps at GBs, trap-assisted recombination at interfaces (between the transport layers and the perovskite) is the dominant loss mechanism. We find a direct correlation between the density of traps, the density of mobile ionic defects, and the degree of hysteresis observed in the current-voltage (J-V) characteristics. The presence of defect states or mobile ions not only limits the device performance but also plays a role in the J-V hysteresis.

12.
J Am Chem Soc ; 139(8): 3237-3248, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28157309

RESUMEN

The synthesis and characterization of a series of new cyclometalated iridium(III) complexes [Ir(ppy)2(N∧N)][PF6] in which Hppy = 2-phenylpyridine and N∧N is (pyridin-2-yl)benzo[d]thiazole (L1), 2-(4-(tert-butyl)pyridin-2-yl)benzo[d]thiazole (L2), 2-(6-phenylpyridin-2-yl)benzo[d]thiazole (L3), 2-(4-(tert-butyl)-6-phenylpyridin-2-yl)benzo[d]thiazole (L4), 2,6-bis(benzo[d]thiazol-2-yl)pyridine (L5), 2-(pyridin-2-yl)benzo[d]oxazole (L6), or 2,2'-dibenzo[d]thiazole (L7) are reported. The single crystal structures of [Ir(ppy)2(L1)][PF6]·1.5CH2Cl2, [Ir(ppy)2(L6)][PF6]·CH2Cl2, and [Ir(ppy)2(L7)][PF6] have been determined. The new complexes are efficient red emitters and have been used in the active layers in light-emitting electrochemical cells (LECs). The effects of modifications of the 2-(pyridin-2-yl)benzo[d]thiazole ligand on the photoluminescence and LEC performance have been examined. Extremely stable red-emitting LECs are obtained, and when [Ir(ppy)2(L1)][PF6], [Ir(ppy)2(L2)][PF6], or [Ir(ppy)2(L3)][PF6] are used in the active layer, device lifetimes greater than 1000, 6000, and 4000 h, respectively, are observed.

13.
ACS Appl Mater Interfaces ; 8(49): 33907-33915, 2016 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960443

RESUMEN

Despite hundreds of cationic bis-cyclometalated iridium(III) complexes having been explored as emitters for light-emitting electrochemical cells (LEECs), uniformly their composition has been in the form of a racemic mixture of Λ and Δ enantiomers. The investigation of LEECs using enantiopure iridium(III) emitters, however, remains unprecedented. Herein, we report the preparation, the crystal structures, and the optoelectronic properties of two families of cyclometalated iridium(III) complexes of the form of [(C^N)2Ir(dtBubpy)]PF6 (where dtBubpy is 4,4'-di-tert-butyl-2,2'-bipyridine) in both their racemic and enantiopure configurations. LEEC devices using Λ and Δ enantiomers as well as the racemic mixture of both families have been prepared, and the device performances were tested. Importantly, different solid-state photophysical properties exist between enantiopure and racemic emitters, which are also reflected in the device performances.

14.
Dalton Trans ; 45(41): 16379-16392, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27722535

RESUMEN

The synthesis of four cyclometallated [Ir(C^N)2(N^N)][PF6] compounds in which N^N is a substituted 2,2'-bipyridine (bpy) ligand and the naphthyl-centred ligand 2,7-bis(2-(2-(4-(pyridin-2-yl)phenoxy)ethoxy)ethoxy)naphthalene provides the two cyclometallating C^N units is reported. The iridium(iii) complexes have been characterized by 1H and 13C NMR spectroscopies, mass spectrometry and elemental analysis, and their electrochemical and photophysical properties are described. Comparisons are made with a model [Ir(ppy)2(N^N)][PF6] compound (Hppy = 2-phenylpyridine). The complexes containing the naphthyl-unit exhibit similar absorption spectra and excitation at 280 nm leads to an orange emission. The incorporation of the naphthalene unit does not lead to a desirable blue contribution to the emission. Density functional theory calculations were performed to investigate the geometries of the complexes in their ground and first triplet excited states, as well as the energies and compositions of the highest-occupied and lowest unoccupied molecular orbital (HOMO and LUMO) manifolds. Trends in the HOMO-LUMO gaps agree with those observed electrochemically. The energy difference between the LUMO and the lowest unoccupied MO located on the naphthyl unit (LUMO+7) is large enough to explain why there is no contribution from the naphthyl-centred triplet excited state to the phosphorescence emission. Singlet excited states were also investigated. Light-emitting electrochemical cells (LECs) using the [Ir(C^N)2(N^N)][PF6] and [Ir(ppy)2(N^N)][PF6] complexes in the emissive layer were made and evaluated. The presence of the naphthyl-bridge between the cyclometallating units does not significantly alter the device response.

15.
Phys Chem Chem Phys ; 18(39): 27521-27528, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27722660

RESUMEN

Single 1,8-octanedithiol (ODT) molecules adsorbed onto the Cu(100) surface have been characterized by using scanning tunneling microscopy (STM) and studied by semi-empirical calculations. STM images have revealed two types of chiral molecules on the surface upon adsorption and both types of molecules showed two bright spots at the extremities of a small rod due to the enhanced electronic density contrast of the chemisorbed sulfur atoms. In sub-monolayer regime deposition, ODT molecules exhibit preferential adsorption directions and the relaxation mechanism is driven by the chemisorption of the two sulfur atoms in a hollow site of the surface. By means of calculations several conformations of the molecule according to the energetically favorable alkane body stretching constraint have been studied. The comparison between relaxed conformations and between calculated and experimental STM images, followed by an analysis of different orientations, has allowed determining unambiguously the most favorable position of the ODT molecule on Cu(100).

16.
Inorg Chem ; 55(20): 10361-10376, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27681985

RESUMEN

The structure-property relationship study of a series of cationic Ir(III) complexes in the form of [Ir(C^N)2(dtBubpy)]PF6 [where dtBubpy = 4,4'-di-tert-butyl-2,2'-bipyridine and C^N = cyclometallating ligand bearing an electron-withdrawing group (EWG) at C4 of the phenyl substituent, i.e., -CF3 (1), -OCF3 (2), -SCF3 (3), -SO2CF3 (4)] has been investigated. The physical and optoelectronic properties of the four complexes were comprehensively characterized, including by X-ray diffraction analysis. All the complexes exhibit quasireversible dtBubpy-based reductions from -1.29 to -1.34 V (vs SCE). The oxidation processes are likewise quasireversible (metal + C^N ligand) and are between 1.54 and 1.72 V (vs SCE). The relative oxidation potentials follow a general trend associated with the Hammett parameter (σ) of the EWGs. Surprisingly, complex 4 bearing the strongest EWG does not adhere to the expected Hammett behavior and was found to exhibit red-shifted absorption and emission maxima. Nevertheless, the concept of introducing EWGs was found to be generally useful in blue-shifting the emission maxima of the complexes (λem = 484-545 nm) compared to that of the prototype complex [Ir(ppy)2(dtBubpy)]PF6 (where ppy = 2-phenylpyridinato) (λem = 591 nm). The complexes were found to be bright emitters in solution at room temperature (ΦPL = 45-66%) with microsecond excited-state lifetimes (τe = 1.14-4.28 µs). The photophysical properties along with density functional theory (DFT) calculations suggest that the emission of these complexes originates from mixed contributions from ligand-centered (LC) transitions and mixed metal-to-ligand and ligand-to-ligand charge transfer (LLCT/MLCT) transitions, depending on the EWG. In complexes 1, 3, and 4 the 3LC character is prominent over the mixed 3CT character, while in complex 2, the mixed 3CT character is much more pronounced, as demonstrated by DFT calculations and the observed positive solvatochromism effect. Due to the quasireversible nature of the oxidation and reduction waves, fabrication of light-emitting electrochemical cells (LEECs) using these complexes as emitters was possible with the LEECs showing moderate efficiencies.

17.
Inorg Chem ; 54(12): 5907-14, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26037410

RESUMEN

We report on four cationic iridium(III) complexes [Ir(C^N)2(dtBubpy)](PF6) that have sulfur pentafluoride-modified 1-phenylpyrazole and 2-phenylpyridine cyclometalating (C^N) ligands (dtBubpy = 4,4'-di-tert-butyl-2,2'-bipyridyl). Three of the complexes were characterized by single-crystal X-ray structure analysis. In cyclic voltammetry, the complexes undergo reversible oxidation of iridium(III) and irreversible reduction of the SF5 group. They emit bright green phosphorescence in acetonitrile solution and in thin films at room temperature, with emission maxima in the range of 482-519 nm and photoluminescence quantum yields of up to 79%. The electron-withdrawing sulfur pentafluoride group on the cyclometalating ligands increases the oxidation potential and the redox gap and blue-shifts the phosphorescence of the iridium complexes more so than the commonly employed fluoro and trifluoromethyl groups. The irreversible reduction of the SF5 group may be a problem in organic electronics; for example, the complexes do not exhibit electroluminescence in light-emitting electrochemical cells (LEECs). Nevertheless, the complexes exhibit green to yellow-green electroluminescence in doped multilayer organic light-emitting diodes (OLEDs) with emission maxima ranging from 501 nm to 520 nm and with an external quantum efficiency (EQE) of up to 1.7% in solution-processed devices.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Iridio/química , Compuestos Organometálicos/química , Técnicas de Química Sintética , Cristalografía por Rayos X , Diseño de Equipo , Fluoruros/química , Ligandos , Mediciones Luminiscentes , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos de Azufre/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...