Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Ultrason Sonochem ; 104: 106816, 2024 Mar.
Article En | MEDLINE | ID: mdl-38433032

Bubbles oscillating in the presence of ultrasound is commonly employed in biomedical applications for drug delivery, ultrasound enhanced thrombolysis, and the transport and manipulation of cells. This is possible because bubbles tend to interact with the ultrasound to undergo periodic shape changes known as shape-mode oscillation, concomitant with the generation of liquid agitation or streaming. This phenomenon is examined both experimentally and theoretically on a single bubble at a frequency of (45 ± 1) kHz. Effects of ultrasonic frequency and power on the flowfield were explored. Experiments revealed different trends in the development of liquid streaming velocities at different acoustic forcing conditions (5.53, 6.80 and 7.02 Vpp), with lowest (0.5 mm/s) and highest (1.1 mm/s) values of time-averaged mean streaming velocity occurring at 6.80 Vpp and 7.02 Vpp, respectively. Simulations captured the simultaneous evolution of bubble-shapes that helped create flow vortices in the liquid surrounding the bubble. These vortices collectively responsible in generating signature patterns in the liquid for a dominant shape-mode of the bubble, and could also generate localised shear stresses for practical application. The velocity and pressure profiles in the liquid around the bubble confirmed the connection of the applied and reflected soundwaves in driving this phenomenon.


Acoustics , Ultrasonography
2.
Top Curr Chem (Cham) ; 380(5): 34, 2022 Jun 23.
Article En | MEDLINE | ID: mdl-35737142

The molecules possessing triazine and tetrazine moieties belong to a special class of heterocyclic compounds. Both triazines and tetrazines are building blocks and have provided a new dimension to the design of biologically important organic molecules. Several of their derivatives with fine-tuned electronic properties have been identified as multifunctional, adaptable, switchable, remarkably antifungal, anticancer, antiviral, antitumor, cardiotonic, anti-HIV, analgesic, anti-protozoal, etc. The objective of this review is to comprehensively describe the recent developments in synthesis, coordination properties, and various applications of triazine and tetrazine molecules. The rich literature demonstrates various synthetic routes for a variety of triazines and tetrazines through microwave-assisted, solid-phase, metal-based, [4+2] cycloaddition, and multicomponent one-pot reactions. Synthetic approaches contain linear, angular, and fused triazine and tetrazine heterocycles through a combinatorial method. Notably, the triazines and tetrazines undergo a variety of organic transformations, including electrophilic addition, coupling, nucleophilic displacement, and intramolecular cyclization. The mechanistic aspects of these heterocycles are discussed in a detailed way. The bioorthogonal application of these polyazines with various strained alkenes and alkynes provides a new prospect for investigations in chemical biology. This review systematically encapsulates the recent developments and challenges in the synthesis and possible potential applications of various triazine and tetrazine systems.


Alkenes , Triazines , Alkenes/chemistry , Alkynes , Cyclization , Cycloaddition Reaction , Triazines/chemistry
3.
Ultrason Sonochem ; 73: 105493, 2021 May.
Article En | MEDLINE | ID: mdl-33609993

The generation of cavitation-free radicals through evanescent electric field and bulk-streaming was reported when micro-volumes of a liquid were subjected to 10 MHz surface acoustic waves (SAW) on a piezoelectric substrate [Rezk et al., J. Phys. Chem. Lett. 2020, 11, 4655-4661; Rezk et al., Adv. Sci. 2021, 8, 2001983]. In the current study, we have tested a similar hypothesis with PZT-based ultrasonic units (760 kHz and 2 MHz) with varying dissolved gas concentrations, by sonochemiluminescence measurement and iodide dosimetry, to correlate radical generation with dissolved gas concentrations. The dissolved gas concentration was adjusted by controlling the over-head gas pressure. Our study reveals that there is a strong correlation between sonochemical activity and dissolved gas concentration, with negligible sonochemical activity at near-vacuum conditions. We therefore conclude that radical generation is dominated by acoustic cavitation in conventional PZT-based ultrasonic reactors, regardless of the excitation frequency.

4.
Biophys Rev ; 13(6): 1229-1243, 2021 Dec.
Article En | MEDLINE | ID: mdl-35059039

Acoustic cavitation (or the formation of bubbles using acoustic or ultrasound-based devices) has been extensively exploited for biological applications in the form of bioprocessing and drug delivery/uptake. However, the governing parameters behind the several physical effects induced by cavitation are generally lacking in quantity in terms of suitable operating parameters of ultrasonic units. This review elaborates the current gaps in this realm and summarizes suitable investigative tools to explore the shear generated during cavitation. The underlying physics behind these events are also discussed. Furthermore, current advances of acoustic shear on biological specimens as well as future prospects of this cavitation-induced shear are also described.

5.
J Phys Chem Lett ; 11(12): 4655-4661, 2020 Jun 18.
Article En | MEDLINE | ID: mdl-32453583

We reveal a unique mechanism by which pure water can be dissociated to form free radicals without requiring catalysts, electrolytes, or electrode contact by means of high-frequency nanometer-amplitude electromechanical surface vibrations in the form of surface acoustic waves (SAWs) generated on a piezoelectric substrate. The physical undulations associated with these mechanical waves, in concert with the evanescent electric field arising from the piezoelectric coupling, constitute half-wavelength "nanoelectrochemical cells" in which liquid is trapped within the SAW potential minima with vertical dimensions defined by the wave amplitude (∼10 nm), thereby forming highly confined polarized regions with intense electric field strengths that enable the breakdown of water. The ions and free radicals that are generated rapidly electromigrate under the high field intensity in addition to being convectively transported away from the cells by the bulk liquid recirculation generated by the acoustic excitation, thereby overcoming mass transport limitations that lead to ion recombination.

...