Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Adv Mater ; : e2400443, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656603

Scintillating materials emit light when exposed to ionizing radiation or particles and are used for the detection of nuclear threats, medical imaging, high-energy physics, and other usages. For some of these applications, it is vital to distinguish neutrons and charged particles from γ-rays. This is achievable by pulse shape discrimination (PSD), a time-gated technique, which exploits that the scintillation kinetics can depend on the nature of the incident radiation. However, it proves difficult to realize efficient PSD with plastic scintillators, which have several advantages over liquid or crystalline scintillating materials, including mechanical robustness and shapeability. It is shown here that sensitive and rapid PSD is possible with nanostructured polymer scintillators that consist of a solid polymer matrix and liquid nanodomains in which an organic dye capable of triplet-triplet annihilation (TTA) is dissolved. The liquid nature of the nanodomains renders TTA highly efficient so that delayed fluorescence can occur at low energy density. The nanostructured polymer scintillators allow discriminating α particles, neutrons, and γ-rays with a time response that is better than that of commercial scintillators. Exploiting that the liquid nanodomains can facilitate energy transfer processes otherwise difficult to realize in solid polymers, an auxiliary triplet sensitizer is incorporated. This approach further increases the scintillator's sensitivity toward α particles and neutrons and other high-energy processes where localized interactions are involved.

2.
Nano Lett ; 24(3): 905-913, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38197790

Lead halide perovskite nanocrystals (LHP-NCs) embedded in polymeric hosts are gaining attention as scalable and low-cost scintillation detectors for technologically relevant applications. Despite rapid progress, little is currently known about the scintillation properties and stability of LHP-NCs prepared by the ligand assisted reprecipitation (LARP) method, which allows mass scalability at room temperature unmatched by any other type of nanostructure, and the implications of incorporating LHP-NCs into polyacrylate hosts are still largely debated. Here, we show that LARP-synthesized CsPbBr3 NCs are comparable to particles from hot-injection routes and unravel the dual effect of polyacrylate incorporation, where the partial degradation of LHP-NCs luminescence is counterbalanced by the passivation of electron-poor defects by the host acrylic groups. Experiments on NCs with tailored surface defects show that the balance between such antithetical effects of polymer embedding is determined by the surface defect density of the NCs and provide guidelines for further material optimization.

3.
Adv Healthc Mater ; 12(32): e2301527, 2023 Dec.
Article En | MEDLINE | ID: mdl-37826854

Effective and accessible treatments for Alzheimer's disease (AD) are urgently needed. Soluble Aß oligomers are identified as neurotoxic species in AD and targeted in antibody-based drug development to mitigate cognitive decline. However, controversy exists concerning their efficacy and safety. In this study, an alternative strategy is proposed to inhibit the formation of Aß oligomers by selectively oxidizing specific amino acids in the Aß sequence, thereby preventing its aggregation. Targeted oxidation is achieved using biocompatible and blood-brain barrier-permeable multicomponent nanoscintillators that generate singlet oxygen upon X-ray interaction. Surface-modified scintillators interact selectively with Aß and, upon X-ray irradiation, inhibit the formation of neurotoxic aggregates both in vitro and in vivo. Feeding transgenic Caenorhabditis elegans expressing human Aß with the nanoscintillators and subsequent irradiation with soft X-ray reduces Aß oligomer levels, extends lifespan, and restores memory and behavioral deficits. These findings support the potential of X-ray-based therapy for AD and warrant further development.


Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Blood-Brain Barrier/metabolism , Antibodies/metabolism
4.
ACS Appl Mater Interfaces ; 15(20): 24693-24700, 2023 May 24.
Article En | MEDLINE | ID: mdl-37172016

Multicomponent nanomaterials consisting of dense scintillating particles functionalized by or embedding optically active conjugated photosensitizers (PSs) for cytotoxic reactive oxygen species (ROS) have been proposed in the last decade as coadjuvant agents for radiotherapy of cancer. They have been designed to make scintillation-activated sensitizers for ROS production in an aqueous environment under exposure to ionizing radiations. However, a detailed understanding of the global energy partitioning process occurring during the scintillation is still missing, in particular regarding the role of the non-radiative energy transfer between the nanoscintillator and the conjugated moieties which is usually considered crucial for the activation of PSs and therefore pivotal to enhance the therapeutic effect. We investigate this mechanism in a series of PS-functionalized scintillating nanotubes where the non-radiative energy transfer yield has been tuned by control of the intermolecular distance between the nanotube and the conjugated system. The obtained results indicate that non-radiative energy transfer has a negligible effect on the ROS sensitization efficiency, thus opening the way to the development of different architectures for breakthrough radiotherapy coadjutants to be tested in clinics.


Nanostructures , Nanotubes , Photochemotherapy , Photochemotherapy/methods , Reactive Oxygen Species , Photosensitizing Agents/therapeutic use
5.
Polym Chem ; 14(3): 253-258, 2023 Jan 17.
Article En | MEDLINE | ID: mdl-36760607

Retrieving the starting monomers from polymers synthesized by reversible deactivation radical polymerization has recently emerged as an efficient way to increase the recyclability of such materials and potentially enable their industrial implementation. To date, most methods have primarily focused on utilizing high temperatures (typically from 120 °C to 180 °C) to trigger an efficient depolymerization reaction. In this work, we show that, in the presence of Eosin Y under light irradiation, a much faster depolymerization of polymers made by reversible addition-fragmentation chain-transfer (RAFT) polymerization can be triggered even at a lower temperature (i.e. 100 °C). For instance, green light, in conjunction with ppm amounts of Eosin Y, resulted in the accelerated depolymerization of poly(methyl methacrylate) from 16% (thermal depolymerization at 100 °C) to 37% within 1 hour, and finally 80% depolymerization after 8 hours, as confirmed by both 1H-NMR and SEC analyses. The enhanced depolymerization rate was attributed to the activation of a macroCTA by Eosin Y, thus resulting in a faster macroradical generation. Notably, this method was found to be compatible with different wavelengths (e.g. blue, red and white light irradiation), solvents, and RAFT agents, thus highlighting the potential of light to significantly improve current depolymerization approaches.

6.
Int J Mol Sci ; 23(15)2022 Aug 05.
Article En | MEDLINE | ID: mdl-35955867

Radiation (RT) remains the most frequently used treatment against cancer. The main limitation of RT is its lack of specificity for cancer tissues and the limited maximum radiation dose that can be safely delivered without damaging the surrounding healthy tissues. A step forward in the development of better RT is achieved by coupling it with other treatments, such as photodynamic therapy (PDT). PDT is an anti-cancer therapy that relies on the light activation of non-toxic molecules-called photosensitizers-to generate ROS such as singlet oxygen. By conjugating photosensitizers to dense nanoscintillators in hybrid architectures, the PDT could be activated during RT, leading to cell death through an additional pathway with respect to the one activated by RT alone. Therefore, combining RT and PDT can lead to a synergistic enhancement of the overall efficacy of RT. However, the involvement of hybrids in combination with ionizing radiation is not trivial: the comprehension of the relationship among RT, scintillation emission of the nanoscintillator, and therapeutic effects of the locally excited photosensitizers is desirable to optimize the design of the hybrid nanoparticles for improved effects in radio-oncology. Here, we discuss the working principles of the PDT-activated RT methods, pointing out the guidelines for the development of effective coadjutants to be tested in clinics.


Nanoparticles , Nanostructures , Neoplasms , Photochemotherapy , Humans , Neoplasms/drug therapy , Neoplasms/radiotherapy , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Singlet Oxygen
7.
Photochem Photobiol Sci ; 21(5): 913-921, 2022 May.
Article En | MEDLINE | ID: mdl-35488979

The photon upconversion based on triplet-triplet annihilation (TTA) is a mechanism that converts the absorbed low-energy electromagnetic radiation into higher energy photons also at extremely low excitation intensities, but its use in actual technologies is still hindered by the limited availability of efficient annihilator moieties. We present here the results obtained by the synthesis and application of two new fluorinated chromophores based on phenazine and acridine structures, respectively. Both compounds show upconverted emission demonstrating their ability as TTA annihilator. More interesting, the acridine-based chromophore shows an excellent TTA yield that overcomes the one of some of best model systems. By correlating the experimental data and the quantum mechanical modeling of the investigated compound, we propose an alternative efficient pathway for the generation of the upconverted emissive states involving the peculiar high-energy triplet levels of the dye, thus suggesting a new development strategy for TTA annihilators based on the fine tuning of their high-energy excited states properties.


Light , Photons , Acridines
8.
Nanomaterials (Basel) ; 11(12)2021 Dec 14.
Article En | MEDLINE | ID: mdl-34947738

The sensitization of scintillation was investigated in crosslinked polymeric composite materials loaded with luminescent gold clusters aggregates acting as sensitizers, and with organic dye rhodamine 6G as the emitting species. The evolution in time of the excited states population in the systems is described by a set of coupled rate equations, in which steady state solution allowed obtainment of an expression of the sensitization efficacy as a function of the characteristic parameters of the employed luminescent systems. The results obtained indicate that the realization of sensitizer/emitter scintillating complexes is the strategy that must be pursued to maximize the sensitization effect in composite materials.

9.
ACS Appl Mater Interfaces ; 13(36): 43314-43322, 2021 Sep 15.
Article En | MEDLINE | ID: mdl-34459603

Sensitized triplet-triplet annihilation-based photon upconversion is a photophysical process that affords anti-Stokes-shifted emission after annihilation of two metastable triplet excitons of an emitter dye and the formation of a fluorescent singlet state. While this process readily occurs in solutions under conditions where the mobility of the dye molecules is high, particular architectures are required to facilitate efficient energy transfers in solid polymers. One possibility is to incorporate liquid upconverting domains into solid polymer matrices. Another possibility is to reduce the intermolecular distance between the dyes below the Dexter radius, allowing exciton migration via triplet hopping. We introduce herein nanostructured materials that combine both of these features. These glassy nanostructured polymer systems contain liquid upconverting nanodroplets that are stabilized with a block copolymer surfactant and are fabricated under ambient conditions in a facile one-step protocol. The dyes concentrate in the nanostructured liquid domains, and this enables hopping-mediated ET and TTA between the dyes and leads to an upconversion efficiency of ∼20%.

10.
Sci Transl Med ; 13(607)2021 08 18.
Article En | MEDLINE | ID: mdl-34408077

Friedreich ataxia (FRDA) is caused by the reduced expression of the mitochondrial protein frataxin (FXN) due to an intronic GAA trinucleotide repeat expansion in the FXN gene. Although FRDA has no cure and few treatment options, there is research dedicated to finding an agent that can curb disease progression and address symptoms as neurobehavioral deficits, muscle endurance, and heart contractile dysfunctions. Because oxidative stress and mitochondrial dysfunctions are implicated in FRDA, we demonstrated the systemic delivery of catalysts activity of gold cluster superstructures (Au8-pXs) to improve cell response to mitochondrial reactive oxygen species and thereby alleviate FRDA-related pathology in mesenchymal stem cells from patients with FRDA. We also found that systemic injection of Au8-pXs ameliorated motor function and cardiac contractility of YG8sR mouse model that recapitulates the FRDA phenotype. These effects were associated to long-term improvement of mitochondrial functions and antioxidant cell responses. We related these events to an increased expression of frataxin, which was sustained by reduced autophagy. Overall, these results encourage further optimization of Au8-pXs in experimental clinical strategies for the treatment of FRDA.


Friedreich Ataxia , Animals , Disease Models, Animal , Gold , Humans , Mice , Reactive Oxygen Species , Trinucleotide Repeat Expansion
11.
ACS Appl Mater Interfaces ; 13(11): 12997-13008, 2021 Mar 24.
Article En | MEDLINE | ID: mdl-33719410

As a model radio-photodynamic therapy (RPDT) agent, we developed a multicomponent nanomaterial by anchoring conjugated chromophores on the surface of scintillating chrysotile nanotubes. Its ultimate composition makes the system a scintillation-activated photosensitizer for the singlet oxygen production. This nanomaterial shows a remarkable ability to enhance the production of singlet oxygen in an aqueous environment, under X-ray irradiation, boosting its production by almost 1 order of magnitude. Its efficiency as a coadjutant for radiotherapy has been tested in vitro, showing a striking efficacy in enhancing both the prompt cytotoxicity of the ionizing radiation and the long-term cytotoxicity given by radiation-activated apoptosis. Notably, the beneficial activity of the RPDT agent is prominent at low levels of delivered doses comparable to the one employed in clinical treatments. This opens the possibility of effectively reducing the therapy exposure and consequently undesired collateral effects due to prolonged exposure of patients to high-energy radiation.


Nanotubes , Neoplasms/therapy , Photosensitizing Agents/pharmacology , Asbestos, Serpentine/chemistry , Cell Line, Tumor , Humans , Nanotubes/chemistry , Nanotubes/ultrastructure , Neoplasms/metabolism , Neoplasms/radiotherapy , Photochemotherapy , Photosensitizing Agents/chemistry , Singlet Oxygen/metabolism , X-Rays
12.
J Chem Phys ; 153(11): 114302, 2020 Sep 21.
Article En | MEDLINE | ID: mdl-32962369

Photon upconversion based on sensitized triplet-triplet annihilation in bi-component systems is a multistep process that involves a triplet-triplet energy transfer (ET) from a donor to an acceptor moiety. This is aimed at sensitizing the population of annihilating optically dark triplets that generates the high energy photoluminescence. A large resonance between the involved triplets is usually recommended because it increases the energy gain between absorbed and emitted upconverted photons. However, it also enables efficient back-ET from acceptor to donor triplets, with potential detrimental consequences on the system performance. Here, we analyze a model system, where the energy difference between donor and acceptor triplets is lower than kBT at room temperature by means of time resolved and steady state photoluminescence spectroscopy, and develop a kinetic model, which describes the iterative loop that transfers the triplet exciton between the donor and acceptor molecules. In such a way, we obtained the guidelines for the optimization of the system composition required to overcome the back-ET effect and maximize the upconversion quantum yield.

13.
Adv Mater ; 32(37): e2002953, 2020 Sep.
Article En | MEDLINE | ID: mdl-32761660

Low-power photon upconversion (UC) based on sensitized triplet-triplet annihilation (sTTA) is considered as the most promising upward wavelength-shifting technique to enhance the light-harvesting capability of solar devices. Colloidal nanocrystals (NCs) with conjugated organic ligands have been recently proposed to extend the limited light-harvesting capability of molecular absorbers. Key to their functioning is efficient energy transfer (ET) from the NC to the triplet state of the ligands that sensitize free annihilator moieties responsible for the upconverted luminescence. The ET efficiency is typically limited by parasitic processes, above all nonradiative hole-transfer to the ligand highest occupied molecular orbital (HOMO). Here, a new exciton-manipulation approach is demonstrated that enables loss-free ET by electronically doping CdSe NCs with gold impurities that introduce a hole-accepting intragap state above the HOMO energy of 9-anthracene acid ligands. Upon photoexcitation, the NC photoholes are rapidly routed to the Au-level, producing a long-lived bound exciton in perfect resonance with the ligand triplet. This hinders hole-transfer leading to ≈100% efficient ET that translates into an upconversion quantum yield as high as ≈12% (≈24% in the normalized definition), which is the highest performance for NC-based upconverters based on sTTA to date and approaches the record efficiency of optimized organic systems.

14.
Adv Mater ; 31(40): e1903309, 2019 Oct.
Article En | MEDLINE | ID: mdl-31441141

The conversion of low-energy light into photons of higher energy based on sensitized triplet-triplet annihilation (sTTA) upconversion is emerging as the most promising wavelength-shifting methodology because it operates efficiently at excitation powers as low as the solar irradiance. However, the production of solid-state upconverters suited for direct integration in devices is still an ongoing challenge owing to the difficulties concerning the organization of two complementary moieties, the triplet sensitizer, and the annihilator, which must interact efficiently. This problem is solved by fabricating porous fluorescent nanoparticles wherein the emitters are integrated into robust covalent architectures. These emitting porous aromatic framework (ePAF) nanoparticles allow intimate interaction with the included metallo-porphyrin as triplet sensitizers. Remarkably, the high concentration of framed chromophores ensures hopping-mediated triplet diffusion required for TTA, yet the low density of the framework promotes their high optical features without quenching effects, typical of the solid state. A green-to-blue photon upconversion yield as high as 15% is achieved: a record performance among annihilators in a condensed phase. Furthermore, the engineered ePAF architecture containing covalently linked sensitizers produces full-fledge solid-state bicomponent particles that behave as autonomous nanodevices.

15.
Phys Chem Chem Phys ; 21(23): 12353-12359, 2019 Jun 21.
Article En | MEDLINE | ID: mdl-31140494

Photon up-conversion based on triplet-triplet annihilation (TTA) exploits the annihilation of optically dark triplets of an organic emitter to produce high-energy singlets that generate high energy emission. In recently proposed hybrid systems, the annihilating triplets are indirectly sensitized by light-harvesting semiconductor colloidal nanocrystals via energy transfer from their capping ligands (h-sTTA). Here, we discuss quantitatively the performance of the h-sTTA up-conversion mechanism in a reference nanocrystal/organic emitter pair, by introducing a kinetic model that points out the relationship between the up-conversion yield and the excitation intensity. This model highlights the fundamental properties of the employed moieties that mostly affect the conversion efficiency. We derive a new expression for the excitation threshold specific for h-sTTA up-conversion, which allows us to estimate a priori the material performances from a few key parameters and to point out the most severe bottlenecks. The obtained results demonstrate that the up-conversion yield is mainly limited by ultrafast non-radiative recombinations of the optical excitons created on nanocrystals, which are competitive to the sensitization channel for emitter triplets in solution. Our results suggest that the quenching partially arises from charge transfer interactions between nanocrystals and surface ligands. Improved ligand design and optimized surface functionalization strategies are required to avoid energy losses and enhance the up-conversion performance, thus promoting the application of h-sTTA up-conversion materials in solar technologies.

16.
Nanoscale ; 10(17): 7933-7940, 2018 May 03.
Article En | MEDLINE | ID: mdl-29671445

Luminescent nanoparticles are researched for their potential impact in medical science, but no materials approved for parenteral use have been available so far. To overcome this issue, we demonstrate that Eu3+-doped hafnium dioxide nanocrystals can be used as non-toxic, highly stable probes for cellular optical imaging and as radiosensitive materials for clinical treatment. Furthermore, viability and biocompatibility tests on artificially stressed cell cultures reveal their ability to buffer reactive oxygen species, proposing an anti-cytotoxic feature interesting for biomedical applications.


Europium/chemistry , Hafnium/chemistry , Luminescence , Nanoparticles/chemistry , Animals , Biocompatible Materials , Cell Line , Luminescent Measurements , Mice , Reactive Oxygen Species/chemistry
17.
Phys Chem Chem Phys ; 20(15): 9745-9750, 2018 Apr 18.
Article En | MEDLINE | ID: mdl-29611578

In triplet-triplet annihilation based upconversion, high-energy photons are generated through the annihilation of fluorophore triplets, populated via energy transfer from a light-harvesting sensitizer. However, the absorption band of common sensitizers is narrow, limiting the fraction of recoverable photons. We overcome this issue using a third chromophore as an additional light-harvester in the transparency window between the upconverted luminescence and the sensitizer absorption. The third component transfers the extra-collected energy to sensitizers, realizing a cascade-sensitized upconversion that shows a 20% increment of the high-energy photon output and a conversion yield of 10% at solar irradiance.

18.
Angew Chem Int Ed Engl ; 57(24): 7051-7055, 2018 06 11.
Article En | MEDLINE | ID: mdl-29673021

Metal clusters with appropriate molecular ligands have been shown to be suitable subnanometer building blocks for supramolecular architectures with controlled secondary interactions, providing access to physical regimes not achievable with conventional intermolecular motifs. An example is the excimer photophysics exhibited by individual cluster-based superstructures produced by top-down etching of gold nanoparticles. Now, a supramolecular architecture of copper clusters is presented with controlled optical properties and efficient non-resonant luminescence produced via a novel bottom-up synthesis using mild green reductants followed by a ligand exchange reaction and spontaneous supramolecular assembly. Spectroscopic experiments confirm the formation of the intercluster network and reveal the permanent nature of their excimer-like behavior, thus extending the potential impact and applicability of metal cluster superstructures as efficient and stable non-resonant single-particle emitters.

19.
Phys Chem Chem Phys ; 20(5): 3233-3240, 2018 Jan 31.
Article En | MEDLINE | ID: mdl-29099143

A novel chromophoric ionic liquid (IL) with two-dimensional (2D) nanostructural order is developed, and its structure-property relationship is investigated by harnessing photon upconversion based on triplet energy migration. An ion pair of 9,10-diphenylanthracene-2-sulphonate (DPAS) and asymmetric quaternary phosphonium ion exhibited both ionic crystal (IC) and supercooled IL phases at room temperature. Single crystal X-ray analysis of the IC phase showed an alternate alignment of polar (ionic) and non-polar (non-ionic) layers, and this layered structure was basically maintained even in the IL phase. The diffusion length of triplet excitons in the IL phase, obtained by the analysis of upconverted emission in succession to triplet-triplet annihilation (TTA), is larger than the domain size estimated from powder X-ray analysis. This suggests that triplet excitons in chromophoric ILs can diffuse over the nanostructured domains.

20.
ACS Appl Mater Interfaces ; 9(46): 40180-40186, 2017 Nov 22.
Article En | MEDLINE | ID: mdl-29083152

Upconversion is a photon-management process especially suited to water-splitting cells that exploit wide-bandgap photocatalysts. Currently, such catalysts cannot utilize 95% of the available solar photons. We demonstrate here that the energy-conversion yield for a standard photocatalytic water-splitting device can be enhanced under solar irradiance by using a low-power upconversion system that recovers part of the unutilized incident sub-bandgap photons. The upconverter is based on a sensitized triplet-triplet annihilation mechanism (sTTA-UC) obtained in a dye-doped elastomer and boosted by a fluorescent nanocrystal/polymer composite that allows for broadband light harvesting. The complementary and tailored optical properties of these materials enable efficient upconversion at subsolar irradiance, allowing the realization of the first prototype water-splitting cell assisted by solid-state upconversion. In our proof-of concept device the increase of the performance is 3.5%, which grows to 6.3% if concentrated sunlight (10 sun) is used. Our experiments show how the sTTA-UC materials can be successfully implemented in technologically relevant devices while matching the strict requirements of clean-energy production.

...