Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(6): 1734-1740, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38323906

RESUMEN

Optical pump-probe techniques allow for an in-depth study of dark excited states. Here, we utilize them to map and gain insights into the excited states involved in the thermally activated delayed fluorescence (TADF) mechanism of a benchmark TADF emitter DMAC-TRZ. The results identify different electronic excited states involved in the key TADF transitions and their nature by combining pump-probe and photoluminescence measurements. The photoinduced absorption signals are highly dependent on polarity, affecting the transition oscillator strength but not their relative energy positions. In methylcyclohexane, a strong and vibronically structured local triplet excited state absorption (3LE → 3LEn) is observed, which is quenched in higher polarity solvents as 3CT becomes the lowest triplet state. Furthermore, ultrafast transient absorption (fsTA) confirms the presence of two stable conformers of DMAC-TRZ: (1) quasi-axial (QA) interconverting within 20 ps into (2) quasi-equatorial (QE) in the excited state. Moreover, fsTA highlights how sensitive excited state couplings are to the environment and the molecular conformation.

2.
J Chem Theory Comput ; 20(3): 1337-1346, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38272840

RESUMEN

We present a detailed investigation into the excited state properties of a planar D3h symmetric azatriangulenetrione, HTANGO, which has received significant interest due to its high solid-state phosphorescence quantum yield and therefore potential as an organic room temperature phosphorescent (ORTP) dye. Using a model linear vibronic coupling Hamiltonian in combination with quantum dynamics simulations, we observe that intersystem crossing (ISC) in HTANGO occurs with a rate of ∼1010 s-1, comparable to benzophenone, an archetypal molecule for fast ISC in heavy metal free molecules. Our simulations demonstrate that the mechanism for fast ISC is associated with the high density of excited triplet states which lie in close proximity to the lowest singlet states, offering multiple channels into the triplet manifold facilitating rapid population transfer. Finally, to rationalize the solid-state emission properties, we use quantum chemistry to investigate the excited state surfaces of the HTANGO dimer, highlighting the influence and importance of the rotational alignment between the two HTANGO molecules in the solid state and how this contributes to high phosphorescence quantum yield.

3.
Phys Chem Chem Phys ; 25(36): 24878-24882, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37681234

RESUMEN

In this study we present a novel energy transfer material inspired by natural light-harvesting antenna arrays, zinc(II) phthalocyanine-pyrene (ZnPcPy). The ZnPcPy system facilitates energy transfer from 16 covalently linked pyrene (Py) donor chromophores to the emissive central zinc(II) phthalocyanine (ZnPc) core. Nearly 98% energy transfer efficiency is determined from the changes in emission decay rates between free MePy to covalently linked Py, supported by comparisons of photoluminescence quantum yields using different excitation wavelengths. A comparative analysis of ZnPcPy and an equivalent mixture of ZnPc and MePy demonstrates the superior light-harvesting performance of the covalently linked system, with energy transfer rates 9705 times higher in the covalently bound system. This covalent strategy allows for very high loadings of absorbing Py chromophores to be achieved while also avoiding exciton quenching that would otherwise arise, with the same strategy widely applicable to other pairs of Forster resonance energy transfer (FRET) chromophores.

4.
Chemistry ; 29(42): e202301369, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37154211

RESUMEN

Metal-free organic emitters that display solution-phase room temperature phosphorescence (sRTP) remain exceedingly rare. Here, we investigate the structural and photophysical properties that support sRTP by comparing a recently reported sRTP compound (BTaz-Th-PXZ) to two novel analogous materials, replacing the donor group by either acridine or phenothiazine. The emissive triplet excited state remains fixed in all three cases, while the emissive charge-transfer singlet states (and the calculated paired charge-transfer T2 state) vary with the donor unit. While all three materials show dominant RTP in film, in solution different singlet-triplet and triplet-triplet energy gaps give rise to triplet-triplet annihilation followed by weak sRTP for the new compounds, compared to dominant sRTP throughout for the original PXZ material. Engineering both the sRTP state and higher charge-transfer states therefore emerges as a crucial element in designing emitters capable of sRTP.

5.
J Phys Chem C Nanomater Interfaces ; 127(18): 8607-8617, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37197385

RESUMEN

We present a joint experimental and theoretical study of the through-space charge transfer (CT) TADF molecule TpAT-tFFO. The measured fluorescence has a singular Gaussian line shape but two decay components, coming from two distinct molecular CT conformers, energetically only 20 meV apart. We determined the intersystem crossing rate (1 × 107 s-1) to be 1 order of magnitude faster than radiative decay, and prompt emission (PF) is therefore quenched within 30 ns, leaving delayed fluorescence (DF) observable from 30 ns onward as the measured reverse intersystem crossing (rISC) rate is >1 × 106 s-1, yielding a DF/PF ratio >98%. Time-resolved emission spectra measured between 30 ns and 900 ms in films show no change in the spectral band shape, but between 50 and 400 ms, we observe a ca. 65 meV red shift of the emission, ascribed to the DF to phosphorescence transition, with the phosphorescence (lifetime >1 s) emanating from the lowest 3CT state. A host-independent thermal activation energy of 16 meV is found, indicating that small-amplitude vibrational motions (∼140 cm-1) of the donor with respect to the acceptor dominate rISC. TpAT-tFFO photophysics is dynamic, and these vibrational motions drive the molecule between maximal rISC rate and high radiative decay configurations so that the molecule can be thought to be "self-optimizing" for the best TADF performance.

6.
ACS Appl Mater Interfaces ; 15(21): 25806-25818, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37199521

RESUMEN

Extensive research has been devoted to the development of thermally activated delayed fluorescence emitters, especially those showing pure-blue emission for use in lighting and full-color display applications. Toward that goal, herein we report a novel weak donor, 1,4-azaborine (AZB), with complementary electronic and structural properties compared to the widely used dimethylacridan (DMAC) or carbazole (Cz) donors. Coupled with a triazine acceptor, AZB-Ph-TRZ is the direct structural analogue of the high-performance and well-studied green TADF emitter DMAC-TRZ and has ΔEST = 0.39 eV, a photoluminescence quantum yield (ΦPL) of 27%, and λPL = 415 nm in 10 wt % doped mCP films. The shortened analogue AZB-TRZ possesses red-shifted emission with a reduced singlet-triplet gap (ΔEST = 0.01 eV) and fast reverse intersystem crossing (kRISC of 5 × 106 s-1) in mCP. Despite a moderate ΦPL of 34%, OLEDs with AZB-TRZ in mCP showed sky-blue emission with CIE1931(x,y) of (0.22,0.39) and a maximum external quantum efficiency (EQEmax) of 10.5%. Expanding the chemist's toolkit for the design of blue donor-acceptor TADF materials will enable yet further advances in the future, as AZB is paired with a wider range of acceptor groups.

7.
Nat Chem ; 15(4): 516-525, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36879076

RESUMEN

The balance between strain relief and aromatic stabilization dictates the form and function of non-planar π-aromatics. Overcrowded systems are known to undergo geometric deformations, but the energetically favourable π-electron delocalization of their aromatic ring(s) is typically preserved. In this study we incremented the strain energy of an aromatic system beyond its aromatic stabilization energy, causing it to rearrange and its aromaticity to be ruptured. We noted that increasing the steric bulk around the periphery of π-extended tropylium rings leads them to deviate from planarity to form contorted conformations in which aromatic stabilization and strain are close in energy. Under increasing strain, the aromatic π-electron delocalization of the system is broken, leading to the formation of a non-aromatic, bicyclic analogue referred to as 'Dewar tropylium'. The aromatic and non-aromatic isomers have been found to exist in rapid equilibrium with one another. This investigation demarcates the extent of steric deformation tolerated by an aromatic carbocycle and thus provides direct experimental insights into the fundamental nature of aromaticity.

8.
J Phys Chem Lett ; 14(11): 2764-2771, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36897796

RESUMEN

The molecular photophysics in the thermally activated delayed fluorescence (TADF) spiro-acridine-anthracenone compound, ACRSA, is dominated by the rigid orthogonal spirocarbon bridging bond between the donor and acceptor. This critically decouples the donor and acceptor units, yielding photophysics, which includes (dual) phosphorescence and the molecular charge transfer (CT) states giving rise to TADF, that are dependent upon the excitation wavelength. The molecular singlet CT state can be directly excited, and we propose that supposed "spiro-conjugation" between acridine and anthracenone is more accurately an example of intramolecular through-space charge transfer. In addition, we show that the lowest local and CT triplet states are highly dependent upon spontaneous polarization of the environment, leading to energy reorganization of the triplet states, with the CT triplet becoming lowest in energy, profoundly affecting phosphorescence and TADF, as evident by a (thermally controlled) competition between reverse intersystem crossing and reverse internal conversion, i.e., dual delayed fluorescence (DF) mechanisms.

9.
Chemistry ; 29(30): e202300428, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-36916635

RESUMEN

Heterocyclic dimers consisting of combinations of butterfly-shaped phenothiazine (PTZ) and its chemically oxidized form phenothiazine-5,5-dioxide (PTZ(SO2 )) have been synthesized. A twist is imposed across the dimers by ortho-substituents including methyl ethers, sulfides and sulfones. X-ray crystallography, cyclic voltammetry and optical spectroscopy, underpinned by computational studies, have been employed to study the interplay between the oxidation state, conformational restriction, and emission mechanisms including thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP). While the PTZ(SO2 ) dimers are simple fluorophores, the presence of PTZ induces triplet-mediated emission with a mixed PTZ-PTZ(SO2 ) dimer displaying concentration dependent hallmarks of both TADF and RTP.

10.
Angew Chem Int Ed Engl ; 62(28): e202302550, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-36951925

RESUMEN

A series of carbazole-dendronized tris(2,4,6-trichlorophenyl)methyl (TTM) radicals have been synthesized. The photophysical properties of dendronized radicals up to the fourth generation were compared systematically to understand how structure-property relationships evolve with generation. The photoluminescence quantum yield (PLQY) was found to increase with the increasing generation, and the fourth generation (G4TTM) in cyclohexane solution showed a PLQY as high as 63 % at a wavelength of 627 nm (in the deep-red region) from the doublet state. The dendron modification strategy also showed a blue-shift of the emission on increasing the generation number, and the photostability was also increased compared to the bare TTM radical.

11.
Angew Chem Int Ed Engl ; 62(9): e202217530, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36622736

RESUMEN

10H-Dibenzo[b,e][1,4]thiaborinine 5,5-dioxide (SO2B)-a high triplet (T1 =3.05 eV) strongly electron-accepting boracycle was successfully utilised in thermally activated delayed fluorescence (TADF) emitters PXZ-Dipp-SO2B and CZ-Dipp-SO2B. We demonstrate the near-complete separation of highest occupied and lowest unoccupied molecular orbitals leading to a low oscillator strength of the S1 →S0 CT transition, resulting in very long ca. 83 ns and 400 ns prompt fluorescence lifetimes for CZ-Dipp-SO2B and PXZ-Dipp-SO2B, respectively, but retaining near unity photoluminescence quantum yield. OLEDs using CZ-Dipp-SO2B as the luminescent dopant display high external quantum efficiency (EQE) of 23.3 % and maximum luminance of 18600 cd m-2 with low efficiency roll off at high brightness. For CZ-Dipp-SO2B, reverse intersystem crossing (rISC) is mediated through the vibronic coupling of two charge transfer (CT) states, without involving the triplet local excited state (3 LE), resulting in remarkable rISC rate invariance to environmental polarity and polarisability whilst giving high organic light-emitting diode (OLED) efficiency. This new form of rISC allows stable OLED performance to be achieved in different host environments.

12.
Chemistry ; 29(23): e202203800, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36648938

RESUMEN

Most organic room-temperature phosphorescence (RTP) emitters do not show their RTP in solution. Here, we incorporated sulfur-containing thiophene bridges between the donor and acceptor moieties in D3 A-type tristriazolotriazines (TTTs). The thiophene inclusion increased the spin-orbit coupling associated with the radiative T1 →S0 pathway, allowing RTP to be observed in solution for all compounds, likely assisted by protection of the emissive TTT-thiophene core from the environment by the bulky peripheral donors.

13.
Phys Chem Chem Phys ; 25(1): 684-689, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36485073

RESUMEN

Considering the relevance of room temperature phosphorescent (RTP) materials, we discuss the influence of donor and acceptor groups substituted on to a twisted three-fold symmetric hydrocarbon homotruxene, which presents a persistent RTP, even in the absence of donor or acceptor moieties, under ambient conditions as a result of the twisted π-system. Compared to a fluorine acceptor, a donor methoxy group increases the phosphorescence decay rate in solution, while in the solid-state, molecular aggregation and packing yield a very persistent phosphorescence visible by the eye. The RTP of the intrinsically apolar homotruxene is found to be modulated by polar substituents, whose main impact on the solid-state emission is due to altered packing in the crystal.

14.
ACS Appl Electron Mater ; 4(7): 3486-3494, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35910938

RESUMEN

Delayed fluorescence (DF) by triplet-triplet annihilation (TTA) is observed in solutions of a benzoperylene-imidoester mesogen that shows a hexagonal columnar mesophase at room temperature in the neat state. A similar benzoperylene-imide with a slightly smaller HOMO-LUMO gap, that also is hexagonal columnar liquid crystalline at room temperature, does not show DF in solution, and mixtures of the two mesogens show no DF in solution either, because of collisional quenching of the excited triplet states on the imidoester by the imide. In contrast, DF by TTA from the imide but not from the imidoester is observed in condensed films of such mixtures, even though neat films of either single material are not displaying DF. In contrast to the DF from the monomeric imidoester in solution, DF of the imide occurs from dimeric aggregates in the blend films, assisted by the imidoester. Thus, the close contact of intimately stacked molecules of the two different species in the columnar mesophase leads to a unique mesophase-assisted aggregate DF. This constitutes the first observation of DF by TTA from the columnar liquid crystalline state. If the imide is dispersed in films of polybromostyrene, which provides an external heavy-atom effect facilitating triplet formation, DF is also observed. Organic light-emitting diodes (OLEDs) devices incorporating these liquid crystal molecules demonstrated high external quantum efficiency (EQE). On the basis of the literature and to the best of our knowledge, the EQE reported is the highest among nondoped solution-processed OLED devices using a columnar liquid crystal molecule as the emitting layer.

15.
J Am Chem Soc ; 144(33): 15211-15222, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35944182

RESUMEN

We present a detailed and comprehensive picture of the photophysics of thermally activated delayed fluorescence (TADF). The approach relies on a few-state model, parametrized ab initio on a prototypical TADF dye, that explicitly accounts for the nonadiabatic coupling between electrons and vibrational and conformational motion, crucial to properly address (reverse) intersystem crossing rates. The Onsager model is exploited to account for the medium polarity and polarizability, with careful consideration of the different time scales of relevant degrees of freedom. TADF photophysics is then quantitatively addressed in a coherent and exhaustive approach that accurately reproduces the complex temporal evolution of emission spectra in liquid solvents as well as in solid organic matrices. The different rigidity of the two environments is responsible for the appearance in matrices of important inhomogeneous broadening phenomena that are ascribed to the intertwined contribution from (quasi)static conformational and dielectric disorder.


Asunto(s)
Electrones , Colorantes Fluorescentes , Solventes , Espectrometría de Fluorescencia , Temperatura
16.
J Phys Chem Lett ; 13(35): 8221-8227, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36007139

RESUMEN

Intramolecular hydrogen bonding between donor and acceptor segments in thermally activated delayed fluorescence (TADF) materials is now frequently employed to─purportedly─rigidify the structure and improve the emission performance of these materials. However, direct evidence for these intramolecular interactions is often lacking or ambiguous, leading to assertions that are largely speculative. Here we investigate a series of TADF-active materials incorporating pyridine, which bestows the potential ability to form intramolecular H-bonding interactions. Despite possible indications of H-bonding from an X-ray analysis, an array of other experimental investigations proved largely inconclusive. Instead, after examining computational potential energy surfaces of the donor-acceptor torsion angle we conclude that the pyridine group primarily alleviates steric congestion in our case, rather than enabling an H-bond interaction as elsewhere assumed. We suggest that many previously reported "H-bonding" TADF materials featuring similar chemical motifs may instead operate similarly and that investigation of potential energy surfaces should become a key feature of future studies.

17.
J Phys Chem Lett ; 13(30): 6981-6986, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35881847

RESUMEN

Donor-acceptor (D-A) thermally activated delayed fluorescence (TADF) molecules are exquisitely sensitive to D-A dihedral angle. Although commonly simplified to an average value, these D-A angles nonetheless exist as distributions across the individual molecules embedded in films. The presence of these angle distributions translates to distributions in the rates of reverse intersystem crossing (krISC), observed as time dependent spectral shifts and multiexponential components in the emission decay, which are difficult to directly quantify. Here we apply inverse Laplace transform fitting of delayed fluorescence to directly reveal these distributions. Rather than a single average value, the crucial krISC rate is instead extracted as a density of rates. The modes and widths of these distributions vary with temperature, host environment, and intrinsic D-A torsional rigidity of different TADF molecules. This method gives new insights and deeper understanding of TADF host-guest interactions, as well as verifies future design strategies that target D-A bond rigidity.

18.
Phys Chem Chem Phys ; 24(29): 17770-17781, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35848596

RESUMEN

Control of photophysical properties is crucial for the continued development of electroluminescent devices and luminescent materials. Preparation and study of original molecules uncovers design rules towards efficient materials and devices. Here we have prepared 7 new compounds based on the popular donor-acceptor design used in thermally activated delayed fluorescence emitters. We introduce for the first time benzofuro[3,2-e]-1,2,4-triazine and benzothieno[3,2-e]-1,2,4-triazine acceptors which were connected to several common donors: phenoxazine, phenothiazine, carbazole and 3,6-di-tert-butylcarbazole. DFT calculations, and steady-state and time-resolved photophysical studies were conducted in solution and in solid states. While derivatives with azine moieties are non-emissive in any form, the compounds comprising 3,6-di-tert-butylcarbazole display TADF in all cases. More interestingly, the two derivatives substituted with a carbazole donor are TADF active when dispersed in a polymer matrix and phosphorescent at room temperature in neat films (microcrystalline form).


Asunto(s)
Carbazoles , Luminiscencia , Cristalización , Triazinas
19.
Chem Sci ; 13(23): 7057-7066, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35774172

RESUMEN

Quantum chemical studies employing combined density functional and multireference configuration interaction methods suggest five excited electronic states to be involved in the prompt and delayed fluorescence emission of TpAT-tFFO. Three of them, a pair of singlet and triplet charge transfer (CT) states (S1 and T1) and a locally excited (LE) triplet state (T3), can be associated with the (Me → N) conformer, the other two CT-type states (S2 and T2) form the lowest excited singlet and triplet states of the (Me → Ph) conformer. The two conformers, which differ in essence by the shearing angle of the face-to-face aligned donor and acceptor moieties, are easily interconverted in the electronic ground state whereas the reorganization energy is substantial in the excited singlet state, thus explaining the two experimentally observed time constants of prompt fluorescence emission. Forward and reverse intersystem crossing between the singlet and triplet CT states is mediated by vibronic spin-orbit interactions involving the LE T3 state. Low-frequency vibrational modes altering the distance and alignment of the donor and acceptor π-systems tune the S1 and T3 states (likewise S2 and T3) into and out of resonance. The enhancement of intersystem crossing due to the interplay of vibronic and spin-orbit coupling is considered a general feature of organic through-space charge-transfer thermally activated delayed fluorescence emitters.

20.
Angew Chem Int Ed Engl ; 61(24): e202202193, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35343025

RESUMEN

Herein, we expose how the antagonistic relationship between solid-state luminescence and photocyclization of oligoaryl alkene chromophores is modulated by the conjugation length of their alkenyl backbones. Heptaaryl cycloheptatriene molecular rotors exhibit aggregation-induced emission characteristics. We show that their emission is turned off upon breaking the conjugation of the cycloheptatriene by epoxide formation. While this modification is deleterious to photoluminescence, it enables formation of extended polycyclic frameworks by Mallory reactions. We exploit this dichotomy (i) to manipulate emission properties in a controlled manner and (ii) as a synthetic tool to link together pairs of phenyl rings in a specific sequence. This method to alter the tendency of oligoaryl alkenes to undergo photocyclization can inform the design of solid-state emitters that avoid this quenching mechanism, while also allowing selective cyclization in syntheses of polycyclic aromatic hydrocarbons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...