Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Water Res ; 258: 121744, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38754301

Replacing petroleum-based plastics with biodegradable polymers is a major challenge for modern society especially for food packaging applications. To date, poly(lactic acid) represents 25 % of the total biodegradable plastics and it is estimated that, in the future, it could become the main contributor to the biodegradable plastics industry. Anaerobic digestion is an interesting way for the poly(lactic acid) end of life, even if its biodegradability is limited in mesophilic conditions. The aims of this study were to identify the best pre-treatment for maximizing the methane yield, minimizing the anaerobic digestion duration and limiting residual plastic fragments in the digestate. A systematic comparison was carried out between thermal, chemical, and thermo-chemical pre-treatment. Pre-treatment with 4 M KOH for 48 h at 35°C was effective in improving the mesophilic anaerobic digestion of the poly(lactic acid). Such pre-treatment allows obtaining 90 % of the theoretical methane potential, in 24 - 30 days. Importantly, such pre-treatment completely solubilized the poly(lactic acid), leaving no solid residues in the digestate. In addition, using KOH permits to avoid the sodication of the soil due to the digestate application as fertilizer.


Polyesters , Polyesters/chemistry , Anaerobiosis , Polymers/chemistry , Methane/metabolism , Lactic Acid/metabolism , Alkalies/chemistry , Hydroxides/chemistry , Potassium Compounds/chemistry , Biodegradation, Environmental , Temperature
2.
J Hazard Mater ; 443(Pt A): 130208, 2023 02 05.
Article En | MEDLINE | ID: mdl-36308937

Biodegradable plastics, if they are not properly managed at their end-of-life, can have the same hazardous environmental consequences as conventional plastics. This study investigates the treatment of the main biodegradable plastics under mesophilic and thermophilic anaerobic digestion using biochemical methane potential test and the microorganisms involved in the process using amplicon sequencing of the 16 S rRNA. Here we showed that, only PHB and TPS undergone important and rapid biodegradation under mesophilic condition (38 °C). By contrast, PCL and PLA exhibited very low biodegradation rate as 500 days were required to reach the ultimate methane yield. Little or no degradation occurred for PBAT and PBS at 38 °C. Under thermophilic conditions (58 °C), TPS, PHB, and PLA reached high levels of biodegradation in a relatively short period (< 100 d). While PBS, PBAT, and PCL could not be converted into methane at 58 °C. PHB degraders (Enterobacter and Cupriavidus) and lactate-utilizing bacteria (Moorella and Tepidimicrobium) appeared to play an important role in the PHB and PLA degradation, respectively. This work not only provides crucial data on the anaerobic digestion of the main biodegradable plastics but also enriches the understanding of the microorganisms involved in this process, which are of great importance for future development of the treatment of biodegradable plastics in anaerobic digestion systems.


Biodegradable Plastics , Microbiota , Anaerobiosis , Bioreactors , Biodegradation, Environmental , Methane , Plastics , Polyesters
3.
Bioresour Technol ; 369: 128313, 2023 Feb.
Article En | MEDLINE | ID: mdl-36375703

The development of selective biowaste collection in most European countries provides new opportunities for the anaerobic digestion sector. In parallel, extensive development of biodegradable plastics like polylactic-acid (PLA) and polyhydroxybutyrate (PHB), which facilitates the replacement of conventional plastics, has taken place in the past decade. This study investigated anaerobic co-digestion in semi-continuous reactors of biowastes (75 % Volatil Solids) and biodegradable plastics (25 % Volatil Solids, PLA and PHB). PHB was estimated to be fully biodegraded in the reactors. By contrast, PLA accumulated in the reactor, and an average biodegradation of 47.6 ± 17.9 % was estimated during the third hydraulic retention time. Pretreatment of PLA, by thermo-alkaline hydrolysis at 70 °C, with 2.5 w/v of Ca(OH)2 for 48 h, improved the biodegradation yield of PLA to 77.5 ± 9.3 %. Finally, it was highlighted that PLA or PHB addition to the feed did not further affect the agronomic properties of the digestate.


Biodegradable Plastics , Bioreactors , Polyesters , Plastics , Digestion , Anaerobiosis , Methane
4.
J Environ Manage ; 324: 116369, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-36202034

The influence of the inoculum-substrate ratio (ISR) on the mesophilic and thermophilic biochemical methane potential test of two biodegradable plastics was evaluated. Poly(lactic acid) (PLA) and polyhydroxybutyrate (PHB) were selected for this study, the first for being recalcitrant to mesophilic anaerobic digestion (AD) and the second, by contrast, for being readily biodegradable. Several ISRs, calculated on the basis of volatile solids (VS), were tested: 1, 2, 2.85, 4, and 10 g(VS of inoculum).g(VS of substrate)-1. A high ISR was associated with an enhanced methane production rate (i.e., biodegradation kinetics). However, the ultimate methane production did not change, except when inhibition was observed. Indeed, applying the lowest ISR to readily biodegradable plastics such as PHB resulted in inhibition of methane production. Based on these experiments, in order to have reproducible degradation kinetics and optimal methane production, an ISR between 2.85 and 4 is recommended for biodegradable plastics. The active microbial communities were analyzed, and the active bacteria differed depending on the plastic digested (PLA versus PHB) and the temperature of the process (mesophilic versus thermophilic). Previously identified PHB degraders (Ilyobacter delafieldii and Enterobacter) were detected in PHB-fed reactors. Thermogutta and Tepidanaerobacter were detected during the thermophilic AD of PLA, and they are probably involved in PLA hydrolysis and lactate conversion, respectively.


Biodegradable Plastics , Microbiota , Methane/metabolism , Anaerobiosis , Biodegradable Plastics/metabolism , Bioreactors , Polyesters/metabolism , Sewage/microbiology
5.
Biotechnol Adv ; 56: 107916, 2022.
Article En | MEDLINE | ID: mdl-35122986

Growing concern regarding non-biodegradable plastics and the impact of these materials on the environment has promoted interest in biodegradable plastics. The intensification of separate biowastes collection in most European countries has also contributed to the development of biodegradable plastics, and the subject of their end-of-life is becoming a key issue. To date, there has been relatively little research to evaluate the biodegradability of biodegradable plastics by anaerobic digestion (AD) compared to industrial and home composting. However, anaerobic digestion is a particularly promising strategy for treating biodegradable organic wastes in the context of circular waste management. This critical review aims to provide an in-depth update of anaerobic digestion of biodegradable plastics by providing a summary of the literature regarding process performance, parameters affecting biodegradability, the microorganisms involved, and some of the strategies (e.g., pretreatment, additives, and inoculum acclimation) used to enhance the degradation rate of biodegradable plastics. In addition, a critical section is dedicated to suggestions and recommendations for the development of biodegradable plastics sector and their treatment in anaerobic digestion.


Biodegradable Plastics , Waste Management , Anaerobiosis , Death , Humans
6.
Chemosphere ; 297: 133986, 2022 Jun.
Article En | MEDLINE | ID: mdl-35176299

To date, the introduction of biodegradable plastics such as PLA in anaerobic digestion systems has been limited by a very low rate of biodegradation. To overcome these limitations, pretreatment technologies can be applied. In this study, the impact of pretreatments (mechanical, thermal, thermo-acid, and thermo-alkaline) was investigated. Mechanical pretreatment of PLA improved its biodegradation rate but did not affect the ultimate methane potential (430-461 NL CH4 kg-1 VS). In parallel, thermal and thermo-acid pretreatments exhibited a similar trend for PLA solubilization. Both of these pretreatments only achieved substantial solubilization (>60%) at higher temperatures (120 and 150 °C). At lower temperatures (70 and 90 °C), negligible solubilization (between 1 and 6%) occurred after 48 h. By contrast, coupling of thermal and alkaline pretreatment significantly increased solubilization at the lower temperatures (70 and 90 °C). In terms of biodegradation, thermo-alkaline pretreatment (with 5% w/v Ca(OH)2) of PLA resulted in a similar methane potential (from 325 to 390 NL CH4 kg-1 VS) for 1 h at 150 °C, 6 h at 120 °C, 24 h at 90 °C, and 48 h at 70 °C. Reduction of the Ca(OH)2 concentration (from 5% to 0.5% w/v) highlighted that a concentration of 2.5% w/v was sufficient to achieve a substantial level of biodegradation. Pretreatment at 70 and 90 °C using 2.5% w/v Ca(OH)2 for 48 h resulted in biodegradation yields of 73% and 68%, respectively. Finally, a good correlation (R2 = 0.90) was found between the PLA solubilization and its biodegradation.


Methane , Polyesters , Anaerobiosis , Biodegradation, Environmental , Methane/metabolism , Polyesters/metabolism , Sewage
7.
Sci Total Environ ; 784: 146972, 2021 Aug 25.
Article En | MEDLINE | ID: mdl-33892320

Biodegradable plastics market is increasing these last decades, including for coffee capsules. Anaerobic digestion, as a potential end-of-life scenario for plastic waste, has to be investigated. For this purpose, mesophilic (38 °C) and thermophilic (58 °C) anaerobic digestion tests on three coffee capsules made up with biodegradable plastic (Beanarella®, Launay® or Tintoretto®) and spent coffee (control) were compared by their methane production and the microbial communities active during the process. Mesophilic biodegradation of the capsules was slow and did not reach completion after 100 days, methane production ranged between 67 and 127 NL (CH4) kg-1 (VS). Thermophilic anaerobic digestion resulted in a better biodegradation and reached completion around 100 days, methane productions were between 257 and 294 NL (CH4) kg-1 (VS). The microbial populations from the reactors fed with plastics versus spent coffee grounds were significantly different, under both the mesophilic and the thermophilic conditions. However, the different biodegradable plastics only had a small impact on the main microbial community composition at a similar operational temperature and sampling time. Interestingly, the genus Tepidimicrobium was identified as a potential key microorganisms involved in the thermophilic conversion of biodegradable plastic in methane.


Bioreactors , Microbiota , Anaerobiosis , Capsules , Coffee , Methane , Sewage , Temperature
8.
J Environ Manage ; 250: 109464, 2019 Nov 15.
Article En | MEDLINE | ID: mdl-31525695

Chemical oxygen demand (COD) is an essential parameter in waste management, particularly for monitoring bioprocess such as anaerobic digestion. Indeed, chemical oxygen demand (COD) is a key parameter that can prove useful for the evaluation of waste biodegradability and to evaluate mass and energetic balances of the overall process. In this study, an adapted method to determine the COD of solid agricultural wastes was developed. This method combined a double acid hydrolysis of the solid waste materials followed by commercial COD tubes analysis. This method was compared to direct sampling after a standard dilution (3.5 g TS.L-1) and analysis in commercial COD tubes. The method developed in this study allowed the COD of nine agricultural wastes to be accurately predicted, with an absolute error of 7% compared to the theoretical COD. In comparison, the method with only a prior water dilution resulted in higher absolute errors of 36% and 31% when sampling was performed with pipette tips and cut pipette tips, respectively.


Solid Waste , Waste Management , Anaerobiosis , Biological Oxygen Demand Analysis , Bioreactors , Hydrolysis , Oxygen
9.
J Environ Manage ; 183(Pt 3): 1026-1031, 2016 Dec 01.
Article En | MEDLINE | ID: mdl-27692517

Pyrolysis is a sustainable pathway to transform renewable biomasses into both biofuels and advanced carbonaceous materials (i.e. pyrochar) which can be used as adsorbent of furan compounds. In particular, the aim of this study was to: i) evaluate the effect of vibro-ball milling on physical characteristics of pyrochar and its consequent performance on solely detoxification of a synthetic medium, containing furans and soluble sugars; ii) study the simultaneous detoxification and bioethanol fermentation, by adding activated pyrochar into fermentation medium. Results demonstrated that, compared to untreated pyrochar, the use of milled pyrochar increased by 52% furfural removal from the synthetic medium. Furfural removal rate was also increased (adsorption kinetic constant increased from 0.015 min-1 up to 0.215 min-1), at a pyrochar loading of 40 g L-1. Although, the simultaneous addition of pyrochar into the fermentation medium did not improve the bioethanol yield of the synthetic medium, it has significantly increased the bioethanol production rate.


Biotechnology/methods , Ethanol/metabolism , Furans/chemistry , Adsorption , Biofuels , Biomass , Fermentation , Furaldehyde/chemistry , Hydrolysis , Saccharomyces cerevisiae/metabolism
10.
Bioresour Technol ; 212: 289-295, 2016 Jul.
Article En | MEDLINE | ID: mdl-27115615

This study investigates the feasibility of producing bioethanol from solid digestate after a mechanical fractionation (i.e. centrifugal milling), in order to improve the energy recovery from agricultural wastes and the sustainability of anaerobic digestion plants. A bioethanol yield of 37gkg(-1)TS was evaluated for the solid digestate fraction. Mass and energetic balances were performed and compared between two scenarios: (A) one-stage bioethanol fermentation and (B) two-stage anaerobic digestion-bioethanol fermentation, in order to evaluate the feasibility and the advantages of the two-stage process. Results revealed that, compared to the one-stage process, the dual anaerobic digestion-bioethanol process permitted: (i) to diversify biofuels production; (ii) to provide the thermal energy sufficient for drying digestate (13,351kWhthday(-1)), for the subsequent milling step; (iii) to reduce the electric energy requirement for the milling step (from 23,880 to 3580kWhelday(-1)); (iv) to produce extra electrical energy of 8483kWhelday(-1); (v) to improve the reduction of waste streams generated (from 13% to 54% of organic matter removal).


Agriculture , Biofuels , Biotechnology/methods , Ethanol/metabolism , Refuse Disposal/methods , Anaerobiosis , Fermentation , Food Handling/methods , Industrial Waste
11.
Bioresour Technol ; 187: 379-386, 2015.
Article En | MEDLINE | ID: mdl-25863902

The robust supramolecular structure of biomass often requires severe pretreatments conditions to produce soluble sugars. Nonetheless, these processes generate some inhibitory compounds (i.e. furans compounds and aliphatic acids) deriving mainly from sugars degradation. To avoid the inhibition of the biological process and to obtain satisfactory sugars conversion level into biofuels, a detoxification step is required. This study investigates the use of two pyrochars derived from solid anaerobic digestates for the detoxification of lignocellulosic hydrolysates. At a pyrochar concentration of 40gL(-1), more than 94% of 5-HMF and 99% of furfural were removed in the synthetic medium after 24h of contact time, whereas sugars concentration remained unchanged. Furfural was adsorbed faster than 5-HMF by both pyrochars and totally removed after 3h of contact. Finally, the two pyrochars were found efficient in the detoxification of corn stalks and Douglas fir wood chips hydrolysates without affecting the soluble sugars concentrations.


Charcoal/chemistry , Charcoal/isolation & purification , Furans/isolation & purification , Lignin/chemistry , Lignin/isolation & purification , Ultrafiltration/methods , Adsorption , Biofuels , Heating , Hydrolysis , Plant Stems/chemistry , Wood/chemistry , Zea mays/chemistry
12.
Biotechnol Adv ; 32(5): 934-51, 2014.
Article En | MEDLINE | ID: mdl-24780154

Nowadays there is a growing interest on the use of both lignocellulosic and algae biomass to produce biofuels (i.e. biohydrogen, ethanol and methane), as future alternatives to fossil fuels. In this purpose, thermal and thermo-chemical pretreatments have been widely investigated to overcome the natural physico-chemical barriers of such biomass and to enhance biofuel production from lignocellulosic residues and, more recently, marine biomass (i.e. macro and microalgae). However, the pretreatment technologies lead not only to the conversion of carbohydrate polymers (ie cellulose, hemicelluloses, starch, agar) to soluble monomeric sugar (ie glucose, xylose, arabinose, galactose), but also the generation of various by-products (i.e. furfural and 5-HMF). In the case of lignocellulosic residues, part of the lignin can also be degraded in lignin derived by-products, mainly composed of phenolic compounds. Although the negative impact of such by-products on ethanol production has been widely described in literature, studies on their impact on biohydrogen and methane production operated with mixed cultures are still very limited. This review aims to summarise and discuss literature data on the impact of pre-treatment by-products on H2-producing dark fermentation and anaerobic digestion processes when using mixed cultures as inoculum. As a summary, furanic (5-HMF, furfural) and phenolic compounds were found to be stronger inhibitors of the microbial dark fermentation than the full anaerobic digestion process. Such observations can be explained by differences in process parameters: anaerobic digestion is performed with more complex mixed cultures, lower substrate/inoculum and by-products/inoculum ratios and longer batch incubation times than dark fermentation. Finally, it has been reported that, during dark fermentation process, the presence of by-products could lead to a metabolic shift from H2-producing pathways (i.e. acetate and butyrate) to non-H2-producing pathways (i.e. lactate, ethanol and propionate) and whatever the metabolic route, metabolites can be all further converted into methane, but at different rates.


Biomass , Eukaryotic Cells/metabolism , Furans/pharmacology , Lignin/pharmacology , Phenols/pharmacology , Anaerobiosis/drug effects , Eukaryotic Cells/drug effects , Hydrolysis/drug effects
13.
Bioresour Technol ; 120: 241-7, 2012 Sep.
Article En | MEDLINE | ID: mdl-22820113

Sunflower stalks can be used for the production of methane, but their recalcitrant structure requires the use of thermo-chemical pretreatments. Two thermal (55 and 170°C) and five thermo-chemical pretreatments (NaOH, H(2)O(2), Ca(OH)(2), HCl and FeCl(3)) were carried out, followed by anaerobic digestion. The highest methane production (259 ± 6 mL CH(4)g(-1) VS) was achieved after pretreatment at 55°C with 4% NaOH for 24h. Acidic pretreatments at 170°C removed more than 90% of hemicelluloses and uronic acids whereas alkaline and oxidative pretreatments were more effective in dissolving lignin. However, no pretreatment was effective in reducing the crystallinity of cellulose. Methane production rate was positively correlated with the amount of solubilized matter whereas methane potential was negatively correlated with the amount of lignin. Considering that the major challenge is obtaining increased methane potential, alkaline pretreatments can be recommended in order to optimize the anaerobic digestion of lignocellulosic substrates.


Biotechnology/methods , Helianthus/chemistry , Plant Stems/chemistry , Temperature , Anaerobiosis , Cellulose/metabolism , Furaldehyde/analogs & derivatives , Furaldehyde/metabolism , Hydrolysis , Kinetics , Lignin/metabolism , Methane/metabolism , Spectroscopy, Fourier Transform Infrared
...