Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 39(8)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35880574

RESUMEN

Animal species differ considerably in their ability to fight off infections. Finding the genetic basis of these differences is not easy, as the immune response is comprised of a complex network of proteins that interact with one another to defend the body against infection. Here, we used population- and comparative genomics to study the evolutionary forces acting on the innate immune system in natural hosts of the avian influenza virus (AIV). For this purpose, we used a combination of hybrid capture, next- generation sequencing and published genomes to examine genetic diversity, divergence, and signatures of selection in 127 innate immune genes at a micro- and macroevolutionary time scale in 26 species of waterfowl. We show across multiple immune pathways (AIV-, toll-like-, and RIG-I -like receptors signalling pathways) that genes involved genes in pathogen detection (i.e., toll-like receptors) and direct pathogen inhibition (i.e., antimicrobial peptides and interferon-stimulated genes), as well as host proteins targeted by viral antagonist proteins (i.e., mitochondrial antiviral-signaling protein, [MAVS]) are more likely to be polymorphic, genetically divergent, and under positive selection than other innate immune genes. Our results demonstrate that selective forces vary across innate immune signaling signalling pathways in waterfowl, and we present candidate genes that may contribute to differences in susceptibility and resistance to infectious diseases in wild birds, and that may be manipulated by viruses. Our findings improve our understanding of the interplay between host genetics and pathogens, and offer the opportunity for new insights into pathogenesis and potential drug targets.


Asunto(s)
Inmunidad Innata , Virus de la Influenza A , Animales , Aves , Genómica , Sistema Inmunológico , Inmunidad Innata/genética , Virus de la Influenza A/genética
2.
Mol Ecol ; 26(10): 2783-2795, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28247584

RESUMEN

The identification of thousands of variants across the genomes and their accurate genotyping are crucial for estimating the genetic parameters needed to address a host of molecular ecological and evolutionary questions. With rapid advances of massively parallel high-throughput sequencing technologies, several methods have recently been developed to access genomewide data on population variation. One of the most successful and widely used techniques relies on the combination of restriction enzymes and sequencing-by-synthesis: restriction-site-associated DNA sequencing (RADSeq). We developed a new, more time- and cost-efficient double-digest RAD paired-end protocol (quaddRAD) that simplifies and speeds up the identification of PCR duplicates and permits large-scale multiplexing. Assessing its performance on a technical data set, we also applied the quaddRAD method on population samples of a Neotropical cichlid fish lineage (Archocentrus centrarchus) to assess its genetic structure and demographic history. While we identified allopatric interlake genetic divergence, most likely driven by drift, no signature of sympatric divergence was detected. This differs from what has been observed in the clade of Midas cichlids (Amphilophus citrinellus spp.), another cichlid lineage that inhabits the same lakes and shares a similar demographic history, but has evolved into small-scale adaptive radiations via sympatric speciation. We demonstrate that quaddRAD is a robust and efficient method for genotyping a massive number and widely overlapping set of loci with high accuracy. Furthermore, the results on A. centrarchus open new research avenues providing an ideal system to investigate genome-level mechanisms that could alter the speciation potential of different but closely related cichlid lineages.


Asunto(s)
Cíclidos/clasificación , Especiación Genética , Genética de Población/métodos , Reacción en Cadena de la Polimerasa/métodos , Animales , Evolución Biológica , Genotipo , Técnicas de Genotipaje , Simpatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA