Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(18): 11886-11897, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38651233

RESUMEN

We study the origin of bimodal emission in AlGaN/AlN QD superlattices displaying a high internal quantum efficiency (around 50%) in the 230-300 nm spectral range. The secondary emission at longer wavelengths is linked to the presence of cone-like domains with deformed QD layers, which originate at the first AlN buffer/superlattice interface and propagate vertically. The cones originate at a 30°-faceted shallow pit in the AlN, which appears to be associated with a threading dislocation that produces strong shear strain. The cone-like structures present Ga enrichment at the boundaring facets and larger QDs within the conic domain. The bimodality of the luminescence is attributed to the differing dot size and composition within the cones and at the faceted boundaries, which is confirmed by the correlation of microscopy results and Schrödinger-Poisson calculations.

2.
Microsc Microanal ; 29(2): 451-458, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37749721

RESUMEN

By collecting simultaneously optical and chemical/morphological data from nanoscale volumes, the Photonic Atom Probe (PAP) can be applied not only to the study of the relationship between optical and structural properties of quantum emitter but also to evaluate the influence of other factors, such as the presence of point defects, on the photoluminescence. Through the analysis of multiple layers of InGaN/GaN quantum dots (QDs), grown so that the density of structural defects is higher with increasing distance from the substrate, we establish that the light emission is higher in the regions exhibiting a higher presence of structural defects. While the presence of intrinsic point defects with non-radiative recombination properties remains elusive, our result is consistent with the fact that QD layers closer to the substrate behave as traps for non-radiative point defects. This result demonstrates the potential of the PAP as a technique for the study of the optical properties of defects in semiconductors.

3.
Materials (Basel) ; 16(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36770233

RESUMEN

Polarization doping in a GaN-InN system with a graded composition layer was studied using ab initio simulations. The electric charge volume density in the graded concentration part was determined by spatial potential dependence. The emerging graded polarization charge was determined to show that it could be obtained from a polarization difference and the concentration slope. It was shown that the GaN-InN polarization difference is changed by piezoelectric effects. The polarization difference is in agreement with the earlier obtained data despite the relatively narrow bandgap for the simulated system. The hole generation may be applied in the design of blue and green laser and light-emitting diodes.

4.
ACS Appl Mater Interfaces ; 15(8): 11208-11215, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36788472

RESUMEN

The engineering of the internal electric field inside III-nitride devices opens up interesting perspectives in terms of device design to boost the radiative efficiency, which is a pressing need in the ultraviolet and green-to-red spectral windows. In this context, it is of paramount importance to have access to a tool like off-axis electron holography which can accurately characterize the electrostatic potentials in semiconductor heterostructures with nanometer-scale resolution. Here, we investigate the distribution of the electrostatic potential and chemical composition in two 10-period AlN/GaN (20 nm/20 nm) multilayer samples, one of these being non-intentionally doped and the other with its GaN layers heavily doped with Ge at a nominal concentration ([Ge] = 2.0 ± 0.2 × 1021 cm-3) which is close to the solubility limit. The electron holography experiments demonstrate the effects of free carrier screening in the case of Ge doping. Furthermore, in the doped sample, an inversion of the internal electric field is observed in some of the AlN layers. A correlated study involving holography, electron dispersive X-ray spectroscopy, and theoretical calculations of the band diagram demonstrates that the perturbation of the potential can be attributed to Ge accumulation at the heterointerfaces, which paves the way to the use of Ge delta doping as a design tool to tune the electric fields in polar heterostructures.

5.
Nano Lett ; 22(23): 9544-9550, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36442685

RESUMEN

A key issue in the development of high-performance semiconductor devices is the ability to properly measure active dopants at the nanometer scale. In a p-n junction, the abruptness of the dopant profile around the metallurgical junction directly influences the electric field. Here, a contacted nominally symmetric and highly doped (NA = ND = 9 × 1018 cm-3) silicon p-n specimen is studied through in situ biased four-dimensional scanning transmission electron microscopy (4D-STEM). Measurements of electric field, built-in voltage, depletion region width, and charge density are combined with analytical equations and finite-element simulations in order to evaluate the quality of the junction interface. It is shown that all the junction parameters measured are compatible with a linearly graded junction. This hypothesis is also consistent with the evolution of the electric field with bias as well as off-axis electron holography data. These results demonstrate that in situ biased 4D-STEM can allow a better understanding of the electrostatics of semiconductor p-n junctions with nm-scale resolution.

6.
Opt Express ; 30(14): 25219-25233, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237057

RESUMEN

We report net gain measurements at room temperature in Al0.07Ga0.93N/GaN 10-period multi-quantum well layers emitting at 367 nm, using the variable stripe length method. The separate confinement heterostructure was designed targeting electron-beam pumped lasing at 10 kV. The highest net gain value was 131 cm-1, obtained at the maximum pumping power density of the experimental setup (743 kW/cm2). The net gain threshold was attained at 218 kW/cm2 using 193 nm optical pumping. From these experiments, we predict an electron-beam-pumped lasing threshold of 370 kW/cm2 at room temperature, which is compatible with the use of compact cathodes (e.g. carbon nanotubes). In some areas of the sample, we observed an anomalous amplification of the photoluminescence intensity that occurs for long stripe lengths (superior to 400 µm) and high pumping power (superior to 550 kW/cm2), leading to an overestimation of the net gain value. We attribute such a phenomenon to the optical feedback provided by the reflection from cracks, which were created during the epitaxial growth due to the strong lattice mismatch between different layers.

7.
Materials (Basel) ; 15(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36295439

RESUMEN

AlxIn1-xN ternary semiconductors have attracted much interest for application in photovoltaic devices. Here, we compare the material quality of AlxIn1-xN layers deposited on Si with different crystallographic orientations, (100) and (111), via radio-frequency (RF) sputtering. To modulate their Al content, the Al RF power was varied from 0 to 225 W, whereas the In RF power and deposition temperature were fixed at 30 W and 300 °C, respectively. X-ray diffraction measurements reveal a c-axis-oriented wurtzite structure with no phase separation regardless of the Al content (x = 0-0.50), which increases with the Al power supply. The surface morphology of the AlxIn1-xN layers improves with increasing Al content (the root-mean-square roughness decreases from ≈12 to 2.5 nm), and it is similar for samples grown on both Si substrates. The amorphous layer (~2.5 nm thick) found at the interface with the substrates explains the weak influence of their orientation on the properties of the AlxIn1-xN films. Simultaneously grown AlxIn1-xN-on-sapphire samples point to a residual n-type carrier concentration in the 1020-1021 cm-3 range. The optical band gap energy of these layers evolves from 1.75 to 2.56 eV with the increase in the Al. PL measurements of AlxIn1-xN show a blue shift in the peak emission when adding the Al, as expected. We also observe an increase in the FWHM of the main peak and a decrease in the integrated emission with the Al content in room-temperature PL measurements. In general, the material quality of the AlxIn1-xN films on Si is similar for both crystallographic orientations.

8.
Materials (Basel) ; 15(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35454453

RESUMEN

In this paper, we present a comparative analysis of the optical properties of non-polar and polar GaN/AlGaN multi-quantum well (MQW) structures by time-resolved photoluminescence (TRPL) and pressure-dependent studies. The lack of internal electric fields across the non-polar structures results in an improved electron and hole wavefunction overlap with respect to the polar structures. Therefore, the radiative recombination presents shorter decay times, independent of the well width. On the contrary, the presence of electric fields in the polar structures reduces the emission energy and the wavefunction overlap, which leads to a strong decrease in the recombination rate when increasing the well width. Taking into account the different energy dependences of radiative recombination in non-polar and polar structures of the same geometry, and assuming that non-radiative processes are energy independent, we attempted to explain the 'S-shape' behavior of the PL energy observed in polar GaN/AlGaN QWs, and its absence in non-polar structures. This approach has been applied previously to InGaN/GaN structures, showing that the interplay of radiative and non-radiative recombination processes can justify the 'S-shape' in polar InGaN/GaN MQWs. Our results show that the differences in the energy dependences of radiative and non-radiative recombination processes cannot explain the 'S-shape' behavior by itself, and localization effects due to the QW width fluctuation are also important. Additionally, the influence of the electric field on the pressure behavior of the investigated structures was studied, revealing different pressure dependences of the PL energy in non-polar and polar MQWs. Non-polar MQWs generally follow the pressure dependence of the GaN bandgap. In contrast, the pressure coefficients of the PL energy in polar QWs are highly reduced with respect to those of the bulk GaN, which is due to the hydrostatic-pressure-induced increase in the piezoelectric field in quantum structures and the nonlinear behavior of the piezoelectric constant.

9.
Nanotechnology ; 33(3)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34633307

RESUMEN

Here, we use electron beam induced current (EBIC) in a scanning transmission electron microscope to characterize the structure and electronic properties of Al/SiGe and Al/Si-rich/SiGe axial nanowire heterostructures fabricated by thermal propagation of Al in a SiGe nanowire. The two heterostructures behave as Schottky contacts with different barrier heights. From the sign of the beam induced current collected at the contacts, the intrinsic semiconductor doping is determined to be n-type. Furthermore, we find that the silicon-rich double interface presents a lower barrier height than the atomically sharp SiGe/Al interface. With an applied bias, the Si-rich region delays the propagation of the depletion region and presents a reduced free carrier diffusion length with respect to the SiGe nanowire. This behaviour could be explained by a higher residual doping in the Si-rich area. These results demonstrate that scanning transmission electron microscopy EBIC is a powerful method for mapping and quantifying electric fields in micrometer- and nanometer-scale devices.

10.
Materials (Basel) ; 14(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34501025

RESUMEN

In this paper, ab initio calculations are used to determine polarization difference in zinc blende (ZB), hexagonal (H) and wurtzite (WZ) AlN-GaN and GaN-InN superlattices. It is shown that a polarization difference exists between WZ nitride compounds, while for H and ZB lattices the results are consistent with zero polarization difference. It is therefore proven that the difference in Berry phase spontaneous polarization for bulk nitrides (AlN, GaN and InN) obtained by Bernardini et al. and Dreyer et al. was not caused by the different reference phase. These models provided absolute values of the polarization that differed by more than one order of magnitude for the same material, but they provided similar polarization differences between binary compounds, which agree also with our ab initio calculations. In multi-quantum wells (MQWs), the electric fields are generated by the well-barrier polarization difference; hence, the calculated electric fields are similar for the three models, both for GaN/AlN and InN/GaN structures. Including piezoelectric effect, which can account for 50% of the total polarization difference, these theoretical data are in satisfactory agreement with photoluminescence measurements in GaN/AlN MQWs. Therefore, the three models considered above are equivalent in the treatment of III-nitride MQWs and can be equally used for the description of the electric properties of active layers in nitride-based optoelectronic devices.

11.
Opt Express ; 29(9): 13084-13093, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985051

RESUMEN

We present a study of undoped AlGaN/GaN separate confinement heterostructures designed to operate as electron beam pumped ultraviolet lasers. We discuss the effect of spontaneous and piezoelectric polarization on carrier diffusion, comparing the results of cathodoluminescence with electronic simulations of the band structure and Monte Carlo calculations of the electron trajectories. Carrier collection is significantly improved using an asymmetric graded-index separate confinement heterostructure (GRINSCH). The graded layers avoid potential barriers induced by polarization differences in the heterostructure and serve as strain transition buffers which reduce the mosaicity of the active region and the linewidth of spontaneous emission.

12.
ACS Appl Mater Interfaces ; 13(3): 4165-4173, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33449632

RESUMEN

Attaining low-resistivity AlxGa1-xN layers is one keystone to improve the efficiency of light-emitting devices in the ultraviolet spectral range. Here, we present a microstructural analysis of AlxGa1-xN/Ge samples with 0 ≤ x ≤ 1, and a nominal doping level in the range of 1020 cm-3, together with the measurement of Ge concentration and its spatial distribution down to the nanometer scale. AlxGa1-xN/Ge samples with x ≤ 0.2 do not present any sign of inhomogeneity. However, samples with x > 0.4 display µm-size Ge crystallites at the surface. Ge segregation is not restricted to the surface: Ge-rich regions with a size of tens of nanometers are observed inside the AlxGa1-xN/Ge layers, generally associated with Ga-rich regions around structural defects. With these local exceptions, the AlxGa1-xN/Ge matrix presents a homogeneous Ge composition which can be significantly lower than the nominal doping level. Precise measurements of Ge in the matrix provide a view of the solubility diagram of Ge in AlxGa1-xN as a function of the Al mole fraction. The solubility of Ge in AlN is extremely low. Between AlN and GaN, the solubility increases linearly with the Ga mole fraction in the ternary alloy, which suggests that the Ge incorporation takes place by substitution of Ga atoms only. The maximum percentage of Ga sites occupied by Ge saturates around 1%. The solubility issues and Ge segregation phenomena at different length scales likely play a role in the efficiency of Ge as an n-type AlGaN dopant, even at Al concentrations where Ge DX centers are not expected to manifest. Therefore, this information can have direct impact on the performance of Ge-doped AlGaN light-emitting diodes, particularly in the spectral range for disinfection (≈260 nm), which requires heavily doped alloys with a high Al mole fraction.

13.
ACS Appl Mater Interfaces ; 12(39): 44007-44016, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32894670

RESUMEN

The present work reports high-quality nonpolar GaN/Al0.6Ga0.4N multiple quantum wells (MQWs) grown in core-shell geometry by metal-organic vapor-phase epitaxy on the m-plane sidewalls of c̅-oriented hexagonal GaN wires. Optical and structural studies reveal ultraviolet (UV) emission originating from the core-shell GaN/AlGaN MQWs. Tuning the m-plane GaN QW thickness from 4.3 to 0.7 nm leads to a shift of the emission from 347 to 292 nm, consistent with Schrödinger-Poisson calculations. The evolution of the luminescence with temperature displays signs of strong localization, especially for samples with thinner GaN QWs and no evidence of quantum-confined Stark effect, as expected for nonpolar m-plane surfaces. The internal quantum efficiency derived from the photoluminescence (PL) intensity ratio at low and room temperatures is maximum (∼7.3% measured at low power excitation) for 2.6 nm thick quantum wells, emitting at 325 nm, and shows a large drop for thicker QWs. An extensive study of the PL quenching with temperature is presented. Two nonradiative recombination paths are activated at different temperatures. The low-temperature path is found to be intrinsic to the heterostructure, whereas the process that dominates at high temperature depends on the QW thickness and is strongly enhanced for QWs larger than 2.6 nm, causing a rapid decrease in the internal quantum efficiency.

14.
Nanotechnology ; 31(47): 472001, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32503014

RESUMEN

Understanding the interplay between the structure, composition and opto-electronic properties of semiconductor nano-objects requires combining transmission electron microscopy (TEM) based techniques with electrical and optical measurements on the very same specimen. Recent developments in TEM technologies allow not only the identification and in-situ electrical characterization of a particular object, but also the direct visualization of its modification in-situ by techniques such as Joule heating. Over the past years, we have carried out a number of studies in these fields that are reviewed in this contribution. In particular, we discuss here i) correlated studies where the same unique object is characterized electro-optically and by TEM, ii) in-situ Joule heating studies where a solid-state metal-semiconductor reaction is monitored in the TEM, and iii) in-situ biasing studies to better understand the electrical properties of contacted single nanowires. In addition, we provide detailed fabrication steps for the silicon nitride membrane-chips crucial to these correlated and in-situ measurements.

15.
Nano Lett ; 20(1): 314-319, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31851824

RESUMEN

Quantum dots inserted in semiconducting nanowires are an interesting platform for the fabrication of single photon devices. To fully understand the physical properties of these objects, we need to correlate the optical, transport, and structural properties on the same nanostructure. In this work, we study the spectral tunability of the emission of a single quantum dot in a GaN nanowire by applying external bias. The nanowires are dispersed and contacted on electron beam transparent Si3N4 membranes, so that transmission electron microscopy observations, photocurrent, and micro-photoluminescence measurements under bias can be performed on the same specimen. The emission from a single dot blue or red shifts when the external electric field compensates or enhances the internal electric field generated by the spontaneous and piezoelectric polarization. A detailed study of two nanowire specimens emitting at 327.5 and 307.5 nm shows spectral shifts at rates of 20 and 12 meV/V, respectively. Theoretical calculations facilitated by the modeling of the exact heterostructure provide a good description of the experimental observations. When the bias-induced band bending is strong enough to favor tunneling of the electron in the dot toward the stem or the cap, the spectral shift saturates and additional transitions associated with charged excitons can be observed.

16.
Nanotechnology ; 30(5): 054002, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30500783

RESUMEN

We present a systematic study of top-down processed GaN/AlN heterostructures for intersubband optoelectronic applications. Samples containing quantum well superlattices that display either near- or mid-infrared intersubband absorption were etched into nano- and micro-pillar arrays in an inductively coupled plasma. We investigate the influence of this process on the structure and strain-state, on the interband emission and on the intersubband absorption. Notably, for pillar spacings significantly smaller (≤1/3) than the intersubband wavelength, the magnitude of the intersubband absorption is not reduced even when 90% of the material is etched away and a similar linewidth is obtained. The same holds for the interband emission. In contrast, for pillar spacings on the order of the intersubband absorption wavelength, the intersubband absorption is masked by refraction effects and photonic crystal modes. The presented results are a first step towards micro- and nano-structured group-III nitride devices relying on intersubband transitions.

17.
Opt Express ; 26(13): 17697-17704, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-30119580

RESUMEN

Superconducting-nanowire single photon detectors (SNSPDs) are able to reach near-unity detection efficiency in the infrared spectral range. However, due to the intrinsic asymmetry of nanowires, SNSPDs are usually very sensitive to the polarization of the incident radiation, their responsivity being maximum for light polarized parallel to the nanowire length (transverse-electric (TE) polarization). Here, we report on the reduction of the polarization sensitivity obtained by capping NbN-based SNSPDs with a high-index SiNx dielectric layer, which reduces the permittivity mismatch between the NbN wire and the surrounding area. Experimentally, a polarization sensitivity below 0.1 is obtained both at 1.31 and 1.55 µm, in excellent agreement with simulations.

18.
Nanotechnology ; 29(25): 255204, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29558360

RESUMEN

Nanowire photodetectors are investigated because of their compatibility with flexible electronics, or for the implementation of on-chip optical interconnects. Such devices are characterized by ultrahigh photocurrent gain, but their photoresponse scales sublinearly with the optical power. Here, we present a study of single-nanowire photodetectors displaying a linear response to ultraviolet illumination. Their structure consists of a GaN nanowire incorporating an AlN/GaN/AlN heterostructure, which generates an internal electric field. The activity of the heterostructure is confirmed by the rectifying behavior of the current-voltage characteristics in the dark, as well as by the asymmetry of the photoresponse in magnitude and linearity. Under reverse bias (negative bias on the GaN cap segment), the detectors behave linearly with the impinging optical power when the nanowire diameter is below a certain threshold (≈80 nm), which corresponds to the total depletion of the nanowire stem due to the Fermi level pinning at the sidewalls. In the case of nanowires that are only partially depleted, their nonlinearity is explained by a nonlinear variation of the diameter of their central conducting channel under illumination.

19.
Nanotechnology ; 29(2): 025710, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28994395

RESUMEN

Quantitative characterization of electrically active dopants and surface charges in nano-objects is challenging, since most characterization techniques using electrons [1-3], ions [4] or field ionization effects [5-7] study the chemical presence of dopants, which are not necessarily electrically active. We perform cathodoluminescence and voltage contrast experiments on a contacted and biased ZnO nanowire with a Schottky contact and measure the depletion length as a function of reverse bias. We compare these results with state-of-the-art off-axis electron holography in combination with electrical in situ biasing on the same nanowire. The extension of the depletion length under bias observed in scanning electron microscopy based techniques is unusual as it follows a linear rather than square root dependence, and is therefore difficult to model by bulk equations or finite element simulations. In contrast, the analysis of the axial depletion length observed by holography may be compared with three-dimensional simulations, which allows estimating an n-doping level of 1 × 1018 cm-3 and negative sidewall surface charge of 2.5 × 1012 cm-2 of the nanowire, resulting in a radial surface depletion to a depth of 36 nm. We found excellent agreement between the simulated diameter of the undepleted core and the active thickness observed in the experimental data. By combining TEM holography experiments and finite element simulation of the NW electrostatics, the bulk-like character of the nanowire core is revealed.

20.
Nano Lett ; 17(11): 6954-6960, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28961016

RESUMEN

Intersubband optoelectronic devices rely on transitions between quantum-confined electron levels in semiconductor heterostructures, which enables infrared (IR) photodetection in the 1-30 µm wavelength window with picosecond response times. Incorporating nanowires as active media could enable an independent control over the electrical cross-section of the device and the optical absorption cross-section. Furthermore, the three-dimensional carrier confinement in nanowire heterostructures opens new possibilities to tune the carrier relaxation time. However, the generation of structural defects and the surface sensitivity of GaAs nanowires have so far hindered the fabrication of nanowire intersubband devices. Here, we report the first demonstration of intersubband photodetection in a nanowire, using GaN nanowires containing a GaN/AlN superlattice absorbing at 1.55 µm. The combination of spectral photocurrent measurements with 8-band k·p calculations of the electronic structure supports the interpretation of the result as intersubband photodetection in these extremely short-period superlattices. We observe a linear dependence of the photocurrent with the incident illumination power, which confirms the insensitivity of the intersubband process to surface states and highlights how architectures featuring large surface-to-volume ratios are suitable as intersubband photodetectors. Our analysis of the photocurrent characteristics points out routes for an improvement of the device performance. This first nanowire based intersubband photodetector represents a technological breakthrough that paves the way to a powerful device platform with potential for ultrafast, ultrasensitive photodetectors and highly efficient quantum cascade emitters with improved thermal stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...