Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Sensors (Basel) ; 22(10)2022 May 13.
Article En | MEDLINE | ID: mdl-35632137

This paper studied the constraint mechanism for power device design based on perovskite quantum dots pumped by an electron beam. Combined with device designing, an experimental system of self-saturation luminescence and aging failure was designed for CsPbBr3 films. On this basis, we further completed the self-saturation luminescence and aging failure experiment and constructed a model of self-saturation luminescence and aging failure for CsPbBr3 device designing. Three constraints were proposed after analyzing and discussing the experimental data. Firstly, too high of a pumping current density makes it difficult to effectively promote the enhancement of luminescence efficiency. Secondly, radiation decomposition and aging failure of CsPbBr3 films are mainly related to the polarized degree of CsPbBr3 nanocrystals. Thirdly, by increasing the pumping electric field, the pumping energy can be effectively and widely delivered to the three-dimensional quantum dots film layer space, and there is a nonlinear relationship between the attenuation of the pumping energy density and the increment of the pumping electric field, which will effectively avoid the local high-energy density of instantaneous optical pumping.

2.
Opt Express ; 26(17): 22296-22306, 2018 Aug 20.
Article En | MEDLINE | ID: mdl-30130924

Physical layer encryption methods are emerging as effective, low-latency approaches to ensure data confidentiality in wireless networks. The use of chaotic signals for data masking is a potential solution to prevent a possible eavesdropper to distinguish between noise and sensitive data. In this work, we experimentally demonstrate the W-band wireless transmission of a 1 Gb/s chaotic signal over 2 m in a radio-over-fiber architecture. The chaos encoding scheme is based on the transition between different states of a Duffing oscillator system, digitally implemented. The bit error rate achieved in all cases was below the forward error correction limit for 7 % overhead. The presented results validate the proposed chaos-based physical layer encoding solution for gigabit data transmissions in hybrid millimeter-wave/photonic networks.

3.
Opt Express ; 25(19): 22347-22361, 2017 Sep 18.
Article En | MEDLINE | ID: mdl-29041547

This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.

4.
Opt Express ; 24(11): 11312-22, 2016 May 30.
Article En | MEDLINE | ID: mdl-27410062

The performance and potential of a W-band radio-over-fiber link is analyzed, including a characterization of the wireless channel. The presented setup focuses on minimizing complexity in the radio frequency domain, using a passive radio frequency transmitter and a Schottky diode based envelope detector. Performance is experimentally validated with carriers at 75-87GHz over wireless distances of 30-70m. Finally the necessity for and impact of bend insensitive fiber for on-site installation are discussed and experimentally investigated.

5.
Opt Express ; 24(15): 16799-814, 2016 Jul 25.
Article En | MEDLINE | ID: mdl-27464133

In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.

6.
Opt Express ; 23(12): 15521-31, 2015 Jun 15.
Article En | MEDLINE | ID: mdl-26193532

Stokes space modulation format recognition (Stokes MFR) is a blind method enabling digital coherent receivers to infer modulation format information directly from a received polarization-division-multiplexed signal. A crucial part of the Stokes MFR is a clustering algorithm, which largely influences the performance of the detection process, particularly at low signal-to-noise ratios. This paper reports on an extensive study of six different clustering algorithms: k-means, expectation maximization, density-based DBSCAN and OPTICS, spectral clustering and maximum likelihood clustering, used for discriminating between dual polarization: BPSK, QPSK, 8-PSK, 8-QAM, and 16-QAM. We determine essential performance metrics for each clustering algorithm and modulation format under test: minimum required signal-to-noise ratio, detection accuracy and algorithm complexity.

7.
Opt Express ; 23(26): 33721-32, 2015 Dec 28.
Article En | MEDLINE | ID: mdl-26832035

Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by ℳ turbulence is coupled to the multimode fiber link. In addition, we report a better and more robust behavior of higher order OAM modes when the intermodal dispersion is dominant in the fiber after exceeding its maximum range of operation.

8.
Opt Express ; 21(21): 24574-81, 2013 Oct 21.
Article En | MEDLINE | ID: mdl-24150301

We present an experimental investigation of the 60 GHz optical carrier suppressed radio over fiber systems with less than 5 dB carrier suppression. As a case study, the 60 GHz RoF signal is generated using a 12.5 Gb/s commercially available Mach-Zehnder modulator biased at its minimum point. We report on error free transmission over 20 km of standard single mode fiber and 1 m of wireless distance. Furthermore, the efficiency of photonic RF generation depending on the value of carrier suppression is reported. We argue that transport of RoF signals with low carrier suppression assisted with simplified techniques of lightwave generation, baseband data modulation, and RF downconversion might be a promising enabling technology for fiber support of close-proximity wireless terminals.

9.
Opt Express ; 21(11): 13617-25, 2013 Jun 03.
Article En | MEDLINE | ID: mdl-23736614

We experimentally investigate the performance of 60 GHz double sideband (DSB) radio over fiber (RoF) links that employ dispersion compensating fiber (DCF). Error free transmission of 3 Gbps signals over 1 m of wireless distance is reported. In order to overcome experimentally observed chromatic dispersion (CD) induced power fading of radio frequency (RF) signal, we propose a method for improvement of RF carrier-to-noise (C/N) ratio through introduction of a degree of RF frequency tunability. Overall results improve important aspects of directly modulated RoF systems and demonstrate the feasibility of high carrier frequency and wide bandwidth RF signals delivery in RoF links including DCF fiber. Error free performance that we obtain for 3 Gbps amplitude shift-keying (ASK) signals enables uncompressed high-definition 1080p video delivery.

10.
Opt Express ; 21(2): 1830-9, 2013 Jan 28.
Article En | MEDLINE | ID: mdl-23389167

QAM modulation utilizing subcarrier frequency lower than the symbol rate is both theoretically and experimentally investigated. High spectral efficiency and concentration of power in low frequencies make sub-cycle QAM signals attractive for optical fiber links with direct modulated light sources. Real-time generated 10-Gbps 4-level QAM signal in a 7.5-GHz bandwidth utilizing subcarrier frequency at a half symbol rate was successfully transmitted over 20-km SMF using an un-cooled 1.5-µm VCSEL. Only 2.5-dB fiber transmission power penalty was observed with no equalization applied.


Computer Communication Networks/instrumentation , Fiber Optic Technology/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis
11.
Opt Express ; 20(26): B181-96, 2012 Dec 10.
Article En | MEDLINE | ID: mdl-23262850

In this paper, we show numerically and experimentally that expectation maximization (EM) algorithm is a powerful tool in combating system impairments such as fibre nonlinearities, inphase and quadrature (I/Q) modulator imperfections and laser linewidth. The EM algorithm is an iterative algorithm that can be used to compensate for the impairments which have an imprint on a signal constellation, i.e. rotation and distortion of the constellation points. The EM is especially effective for combating non-linear phase noise (NLPN). It is because NLPN severely distorts the signal constellation and this can be tracked by the EM. The gain in the nonlinear system tolerance for the system under consideration is shown to be dependent on the transmission scenario. We show experimentally that for a dispersion managed polarization multiplexed 16-QAM system at 14 Gbaud a gain in the nonlinear system tolerance of up to 3 dB can be obtained. For, a dispersion unmanaged system this gain reduces to 0.5 dB.

12.
Opt Express ; 20(26): B64-70, 2012 Dec 10.
Article En | MEDLINE | ID: mdl-23262913

The impact of physical layer impairments in optical network design and operation has received significant attention in the last years, thereby requiring estimation techniques to predict the quality of transmission (QoT) of optical connections before being established. In this paper, we report on the experimental demonstration of a case-based reasoning (CBR) technique to predict whether optical channels fulfill QoT requirements, thus supporting impairment-aware networking. The validation of the cognitive QoT estimator is performed in a WDM 80 Gb/s PDM-QPSK testbed, and we demonstrate that even with a very small and not optimized underlying knowledge base, it achieves between 79% and 98.7% successful classifications based on the error vector magnitude (EVM) parameter, and approximately 100% when the classification is based on the optical signal to noise ratio (OSNR).

13.
Opt Express ; 20(27): 28524-31, 2012 Dec 17.
Article En | MEDLINE | ID: mdl-23263089

We report on migrating multiple-lane link into an L-band VCSEL-based WDM system. Experimental validation achieves successful transmission over 10 km of SMF at 4x14Gbps. Inter-channel crosstalk penalty is observed to be less than 0.5 dB and a transmission penalty around 1 dB. The power budget margin ranges within 6 dB and 7 dB.


Computer Communication Networks/instrumentation , Fiber Optic Technology/instrumentation , Optical Devices , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis , Microwaves
14.
Opt Express ; 20(18): 19990-5, 2012 Aug 27.
Article En | MEDLINE | ID: mdl-23037051

In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs) with approximate 300 MHz linewidth are used as transmitters and local oscillators for coherent detection of optical DP-QPSK signals. The proposed system, with central wavelength at 1540.68 nm, operates at 40 Gb/s over 80 km single mode fiber (SMF) as part of a passive optical network (PON). The deployment of pilot-tone-aided PNC algorithm guarantees a bit error rate (BER) performance below the forward error correction (FEC) threshold. Moreover, we also evaluate a novel digital signal processing (DSP) algorithm for adaptive pilot tone detection.


Algorithms , Computer Communication Networks/instrumentation , Lasers , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Signal-To-Noise Ratio
15.
Opt Express ; 20(4): 4369-75, 2012 Feb 13.
Article En | MEDLINE | ID: mdl-22418195

We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based zero forcing (ZF) channel estimation algorithm is designed to compensate the polarization rotation and wireless multipath fading. A 797 Mb/s net data rate QPSK-OFDM signal with error free (<1 × 10(5)) performance and a 1.59 Gb/s net data rate 16QAM-OFDM signal with BER performance of 1.2 × 10(2) are achieved after transmission of 22.8 km single mode fiber followed by 3 m and 1 m air distances, respectively.

16.
Opt Lett ; 36(6): 810-2, 2011 Mar 15.
Article En | MEDLINE | ID: mdl-21403692

We propose an approach to generate ultrawideband (UWB) pulses with tunable high-speed modulation based on pulse compression. Flexible generation of up to a record 5 Gbits/s on-off keying impulse radio UWB signals are successfully demonstrated as well. We also investigate 5 Gbits/s on-off keying bit-error-rate (BER) performance after 40 km single mode fiber transmission by employing a digital signal processing receiver, and the BER below forward error correction limit is achieved.

17.
Opt Express ; 19(25): 24944-9, 2011 Dec 05.
Article En | MEDLINE | ID: mdl-22273887

We experimentally demonstrate an 100 Gbit/s hybrid optical fiber-wireless link by employing photonic heterodyning up-conversion of optical 12.5 Gbaud polarization multiplexed 16-QAM baseband signal with two free running lasers. Bit-error-rate performance below the FEC limit is successfully achieved for air transmission distances up to 120 cm.


Computer Communication Networks/instrumentation , Fiber Optic Technology/instrumentation , Lasers , Refractometry/instrumentation , Telecommunications/instrumentation , Telemetry/instrumentation , Equipment Design , Equipment Failure Analysis , Microwaves , Systems Integration
18.
Opt Express ; 19(26): B18-25, 2011 Dec 12.
Article En | MEDLINE | ID: mdl-22274016

We present a W-band fiber-wireless transmission system based on a nonlinear frequency multiplier for high-speed wireless short range access applications. By implementing a baseband digital signal predistortion scheme, intensive nonlinear distortions induced in a sextuple frequency multiplier can be effectively pre-compensated. Without using costly W-band components, a transmission system with 26 km fiber and 4 m wireless transmission operating at 99.6 GHz is experimentally validated. Adjacent-channel power ratio (ACPR) improvements for IQ-modulated vector signals are guaranteed and transmission performances for fiber and wireless channels are studied. This W-band predistortion technique is a promising candidate for applications in high capacity wireless-fiber access systems.

19.
Opt Express ; 19(26): B270-6, 2011 Dec 12.
Article En | MEDLINE | ID: mdl-22274029

An experimental demonstration of Ultradense WDM with advanced digital signal processing is presented. The scheme proposed allows the use of independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking. To allocate extremely closed carriers, we demonstrate that a digital non-linear equalization allow to mitigate inter-channel interference and improve overall system performance in terms of OSNR. Evaluation of the algorithm and comparison with an ultradense WDM system with coherent carriers generated from a single laser are also reported.

20.
Opt Express ; 19(26): B429-37, 2011 Dec 12.
Article En | MEDLINE | ID: mdl-22274053

For asynchronous sampled systems such as Polarization Division Multiplexed Quadrature Phase Shift Keying, (PDM-QPSK), phase and frequency of the sampling clock is typically not synchronized to the data symbols. Therefore, timing adjustment, so called clock recovery and interpolation, must be performed in digital domain prior to signal demodulation in order to avoid cycle slips. For the first time, the impact of first order PMD, (DGD), is experimentally investigated and quantified for 112 Gb/s PDM-QPSK signal. We experimentally show that the combined effect of polarization mixing and first order PMD can significantly affect the performance of the timing error detector gain, even for moderate values leading to system outage. We propose and experimentally demonstrate a novel digital adaptive timing error detector is robust to polarization mixing and DGD. The proposed timing error detector algorithm combines the Gardner timing error detector algorithm with an adaptive structure based on gradient method.

...