Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 212
1.
bioRxiv ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38798466

Ovarian cancer remains a major health threat with limited treatment options available. It is characterized by immunosuppressive tumor microenvironment (TME) maintained by tumor- associated macrophages (TAMs) hindering anti-tumor responses and immunotherapy efficacy. Here we show that targeting retinoblastoma protein (Rb) by disruption of its LxCxE cleft pocket, causes cell death in TAMs by induction of ER stress, p53 and mitochondria-related cell death pathways. A reduction of pro-tumor Rb high M2-type macrophages from TME in vivo enhanced T cell infiltration and inhibited cancer progression. We demonstrate an increased Rb expression in TAMs in women with ovarian cancer is associated with poorer prognosis. Ex vivo, we show analogous cell death induction by therapeutic Rb targeting in TAMs in post-surgery ascites from ovarian cancer patients. Overall, our data elucidates therapeutic targeting of the Rb LxCxE cleft pocket as a novel promising approach for ovarian cancer treatment through depletion of TAMs and re-shaping TME immune landscape. Statement of significance: Currently, targeting immunosuppressive myeloid cells in ovarian cancer microenvironment is the first priority need to enable successful immunotherapy, but no effective solutions are clinically available. We show that targeting LxCxE cleft pocket of Retinoblastoma protein unexpectedly induces preferential cell death in M2 tumor-associated macrophages. Depletion of immunosuppressive M2 tumor-associated macrophages reshapes tumor microenvironment, enhances anti-tumor T cell responses, and inhibits ovarian cancer. Thus, we identify a novel paradoxical function of Retinoblastoma protein in regulating macrophage viability as well as a promising target to enhance immunotherapy efficacy in ovarian cancer.

2.
J Nat Prod ; 2024 May 23.
Article En | MEDLINE | ID: mdl-38781491

Current small-molecule-based SARS-CoV-2 treatments have limited global accessibility and pose the risk of inducing viral resistance. Therefore, a marine algae and cyanobacteria extract library was screened for natural products that could inhibit two well-defined and validated COVID-19 drug targets, disruption of the spike protein/ACE-2 interaction and the main protease (Mpro) of SARS-CoV-2. Following initial screening of 86 extracts, we performed an untargeted metabolomic analysis of 16 cyanobacterial extracts. This approach led to the isolation of an unusual saturated fatty acid, jobosic acid (2,5-dimethyltetradecanoic acid, 1). We confirmed that 1 demonstrated selective inhibitory activity toward both viral targets while retaining some activity against the spike-RBD/ACE-2 interaction of the SARS-CoV-2 omicron variant. To initially explore its structure-activity relationship (SAR), the methyl and benzyl ester derivatives of 1 were semisynthetically accessed and demonstrated acute loss of bioactivity in both SARS-CoV-2 biochemical assays. Our efforts have provided copious amounts of a fatty acid natural product that warrants further investigation in terms of SAR, unambiguous determination of its absolute configuration, and understanding of its specific mechanisms of action and binding site toward new therapeutic avenues for SARS-CoV-2 drug development.

3.
bioRxiv ; 2024 May 05.
Article En | MEDLINE | ID: mdl-38746170

Type I interferons (IFNs) play a pivotal role in immune response modulation, yet dysregulation is implicated in various disorders. Therefore, it is crucial to develop tools that facilitate the understanding of their mechanism of action and enable the development of more effective anti-IFN therapeutic strategies. In this study, we isolated, cloned, and characterized anti-IFN-α and anti-IFN-ß antibodies (Abs) from peripheral blood mononuclear cells of individuals treated with IFN-α or IFN-ß, harboring confirmed neutralizing Abs. Clones AH07856 and AH07857 were identified as neutralizing anti-IFN-α-specific with inhibition against IFN-α2a, -α2b, and -αK subtypes. Clones AH07859 and AH07866 were identified as neutralizing anti-IFN-ß1a-specific signaling, and able to block Lipopolysaccharide or S100 calcium binding protein A14-induced IFN-ß signaling effects. Cloned Abs bind rhesus but not murine IFNs. The specificity of inhibition between IFN-α and IFN-ß suggests potential for diverse research and clinical applications.

4.
Chem Zvesti ; 78(6): 3431-3441, 2024.
Article En | MEDLINE | ID: mdl-38685970

Chemical prototypes with broad-spectrum antiviral activity are important toward developing new therapies that can act on both existing and emerging viruses. Binding of the SARS-CoV-2 spike protein to the host angiotensin-converting enzyme 2 (ACE2) receptor is required for cellular entry of SARS-CoV-2. Toward identifying new chemical leads that can disrupt this interaction, including in the presence of SARS-CoV-2 adaptive mutations found in variants like omicron that can circumvent vaccine, immune, and therapeutic antibody responses, we synthesized 5-chloro-3-(2-(2,4-dinitrophenyl)hydrazono)indolin-2-one (H2L) from the condensation reaction of 5-chloroisatin and 2,4-dinitrophenylhydrazine in good yield. H2L was characterised by elemental and spectral (IR, electronic, Mass) analyses. The NMR spectrum of H2L indicated a keto-enol tautomerism, with the keto form being more abundant in solution. H2L was found to selectively interfere with binding of the SARS-CoV-2 spike receptor-binding domain (RBD) to the host angiotensin-converting enzyme 2 receptor with a 50% inhibitory concentration (IC50) of 0.26 µM, compared to an unrelated PD-1/PD-L1 ligand-receptor-binding pair with an IC50 of 2.06 µM in vitro (Selectivity index = 7.9). Molecular docking studies revealed that the synthesized ligand preferentially binds within the ACE2 receptor-binding site in a region distinct from where spike mutations in SARS-CoV-2 variants occur. Consistent with these models, H2L was able to disrupt ACE2 interactions with the RBDs from beta, delta, lambda, and omicron variants with similar activities. These studies indicate that H2L-derived compounds are potential inhibitors of multiple SARS-CoV-2 variants, including those capable of circumventing vaccine and immune responses. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-023-03274-5.

5.
Bioorg Med Chem Lett ; 102: 129679, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38423371

Seven furanochromene-quinoline derivatives containing a hydrazone linker were synthesized by condensing a furanochromene hydrazide with quinoline 2-, 3-, 4-, 5-, 6-, and 8-carbaldehydes, including 8-hydroxyquinoline-2-carbaldehye. Structure-activity correlations were investigated to determine the influence of the location of the hydrazone linker on the quinoline unit on SARS-CoV-2 Mpro enzyme inhibition. The 3-, 5-, 6- and 8-substituted derivatives showed moderate inhibition of SARS-CoV-2 Mpro with IC50 values ranging from 16 to 44 µM. Additionally, all of the derivatives showed strong interaction with the SARS-CoV-2 Mpro substrate binding pocket, with docking energy scores ranging from -8.0 to -8.5 kcal/mol. These values are comparable to that of N3 peptide (-8.1 kcal/mol) and more favorable than GC-373 (-7.6 kcal/mol) and ML-188 (-7.5 kcal/mol), all of which are known SARS-CoV-2 Mpro inhibitors. Furthermore, in silico absorption, distribution, metabolism, and excretion (ADME) profiles indicate that the derivatives have good drug-likeness properties. Overall, this study highlights the potential of the furanochromene-quinoline hydrazone scaffold as a SARS-CoV-2 Mpro inhibitor.


COVID-19 , Coronavirus 3C Proteases , Quinolines , Humans , Hydrazones/pharmacology , Molecular Docking Simulation , SARS-CoV-2 , Quinolines/pharmacology , Protease Inhibitors/pharmacology , Molecular Dynamics Simulation
6.
medRxiv ; 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38405967

The latent reservoir of HIV persists for decades in people living with HIV (PWH) on antiretroviral therapy (ART). To determine if persistence arises from the natural dynamics of memory CD4+ T cells harboring HIV, we compared the clonal dynamics of HIV proviruses to that of memory CD4+ T cell receptors (TCRß) from the same PWH and from HIV-seronegative people. We show that clonal dominance of HIV proviruses and antigen-specific CD4+ T cells are similar but that the field's understanding of the persistence of the less clonally dominant reservoir is significantly limited by undersampling. We demonstrate that increasing reservoir clonality over time and differential decay of intact and defective proviruses cannot be explained by mCD4+ T cell kinetics alone. Finally, we develop a stochastic model of TCRß and proviruses that recapitulates experimental observations and suggests that HIV-specific negative selection mediates approximately 6% of intact and 2% of defective proviral clearance. Thus, HIV persistence is mostly, but not entirely, driven by natural mCD4+ T cell kinetics.

7.
Nat Immunol ; 25(3): 462-470, 2024 Mar.
Article En | MEDLINE | ID: mdl-38278966

The persistence of CD4+ T cells carrying latent human immunodeficiency virus-1 (HIV-1) proviruses is the main barrier to a cure. New therapeutics to enhance HIV-1-specific immune responses and clear infected cells will probably be necessary to achieve reduction of the latent reservoir. In the present study, we report two single-chain diabodies (scDbs) that target the HIV-1 envelope protein (Env) and the human type III Fcγ receptor (CD16). We show that the scDbs promoted robust and HIV-1-specific natural killer (NK) cell activation and NK cell-mediated lysis of infected cells. Cocultures of CD4+ T cells from people with HIV-1 on antiretroviral therapy (ART) with autologous NK cells and the scDbs resulted in marked elimination of reservoir cells that was dependent on latency reversal. Treatment of human interleukin-15 transgenic NSG mice with one of the scDbs after ART initiation enhanced NK cell activity and reduced reservoir size. Thus, HIV-1-specific scDbs merit further evaluation as potential therapeutics for clearance of the latent reservoir.


Antibodies, Bispecific , HIV-1 , Animals , Mice , Humans , Killer Cells, Natural , Cytotoxicity, Immunologic , Cell Death , Mice, Transgenic
8.
HIV Res Clin Pract ; 24(1): 2267825, 2023 10 06.
Article En | MEDLINE | ID: mdl-37837376

BACKGROUND: A feature of HIV cure trials is the need to interrupt treatment to test the efficacy of experimental interventions-a process known as analytical treatment interruptions (ATIs). OBJECTIVES: We report the experiences of participants after they completed an extended ATI. METHODS: From April to November 2022, we conducted post-ATI in-depth interviews with BEAT2 clinical trial (NCT03588715) participants who stopped ART while receiving an immunotherapy regimen. We used conventional content analysis to code the data. RESULTS: We conducted interviews with 11 Black/African American and three White/Caucasian participants (11 males, two females, and one transgender woman). The mean ATI was 38 weeks. Participants noted several significant experiences surrounding the interventions' side effects, ATI, and returning to medication. Some participants had positive experiences with their ATI. Other participants were nervous during the ATI. Rising viral loads led some to feel a sense of failure. Although trial experiences were heterogeneous, participants unanimously had positive interactions with the clinical trial staff which facilitated their retention in the trial. Participants shared their experiences with the trial, including changes in expectations, experiences with experimental interventions and procedures, compensation as a measure of respect, effort, transportation, and effects of COVID-19 during the trial. Based on these results, we provide considerations for the conduct of future HIV cure-directed clinical trials involving ATIs. CONCLUSIONS: Managing expectations, focusing on participants' contributions, and providing support to reduce feelings of having failed the research team and/or the HIV community following viral rebound should be part of HIV cure trial design. Discussing the mental health impact of rebound during consent, distinct from risk, is needed. Continued efforts to understand how people with HIV experience ATIs will improve future designs of HIV cure clinical trials.


COVID-19 , HIV Infections , Female , Humans , Male , HIV Infections/drug therapy , Immunotherapy , Philadelphia , United States , Viral Load , Clinical Trials as Topic
9.
J Clin Invest ; 133(17)2023 09 01.
Article En | MEDLINE | ID: mdl-37463049

HIV-1 persists in a latent reservoir in resting CD4+ T cells despite antiretroviral therapy (ART). The reservoir decays slowly over the first 7 years of ART (t1/2 = 44 months). However, whether decay continues with long-term ART is unclear. Recent integration site studies indicate gradual selection against inducible, intact proviruses, raising speculation that decades of ART might allow treatment interruption without viral rebound. Therefore, we measured the reservoir in 42 people on long-term ART (mean 22 years) using a quantitative viral outgrowth assay. After 7 years of ART, there was no long-term decrease in the frequency of inducible, replication-competent proviruses but rather an increase with an estimated doubling time of 23 years. Another reservoir assay, the intact proviral DNA assay, confirmed that reservoir decay with t1/2 of 44 months did not continue with long-term ART. The lack of decay reflected proliferation of infected cells. Most inducible, replication-competent viruses (79.8%) had env sequences identical to those of other isolates from the same sample. Thus, although integration site analysis indicates changes in reservoir composition, the proliferation of CD4+ T cells counteracts decay, maintaining the frequency of inducible, replication-competent proviruses at roughly constant levels over the long term. These results reinforce the need for lifelong ART.


HIV Infections , HIV-1 , Humans , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , Virus Replication , Proviruses/genetics , CD4-Positive T-Lymphocytes , Viral Load , Virus Latency
10.
Res Involv Engagem ; 9(1): 39, 2023 Jun 08.
Article En | MEDLINE | ID: mdl-37291622

INTRODUCTION: Achieving effective community engagement has been an objective of U.S. National Institutes of Health-funded HIV research efforts, including participation of persons with HIV. Community Advisory Boards (CABs) have remained the predominant model for community engagement since their creation in 1989. As HIV cure-directed research efforts have grown into larger academic-industry partnerships directing resources toward both basic and clinical research under the Martin Delaney Collaboratories (MDC), community input models have also evolved. The BEAT-HIV MDC Collaboratory, based at The Wistar Institute in Philadelphia, United States, implemented a three-part model for community engagement that has shown success in providing greater impact for community engagement across basic, biomedical, and social sciences research efforts. DISCUSSION: In this paper, we review the case study of the formation of the BEAT-HIV Community Engagement Group (CEG) model, starting with the historical partnership between The Wistar Institute as a basic research center and Philadelphia FIGHT as a not-for-profit community-based organization (CBO), and culminating with the growth of community engagement under the BEAT-HIV MDC. Second, we present the impact of a cooperative structure including a Community Advisory Board (CAB), CBO, and researchers through the BEAT-HIV CEG model, and highlight collaborative projects that demonstrate the potential strengths, challenges, and opportunities of this model. We also describe challenges and future opportunities for the use of the CEG model. CONCLUSIONS: Our CEG model integrating a CBO, CAB and scientists could help move us towards the goal of effective, equitable and ethical engagement in HIV cure-directed research. In sharing our lessons learned, challenges and growing pains, we contribute to the science of community engagement into biomedical research efforts with an emphasis on HIV cure-directed research. Our documented experience with implementing the CEG supports greater discussion and independent implementation efforts for this model to engage communities into working teams in a way we find a meaningful, ethical, and sustainable model in support of basic, clinical/biomedical, social sciences and ethics research.


HIV biomedical research groups have prioritized community support and representation as exemplified by the creation of Community Advisory Boards (CABs). Most CABs bring diverse stakeholders to advise on research objectives as part of their activities. The BEAT-HIV Delaney Collaboratory, based at The Wistar Institute in Philadelphia, is a research program created in 2016 to advance HIV cure research. To better engage communities beyond the CAB, the BEAT-HIV Delaney Collaboratory created a Community Engagement Group (CEG) model composed of three distinct components. First, the involvement of a community-based organization (CBO) introduces the historical know-how and relationship with the community. Philadelphia FIGHT fulfills the CBO role as a provider of primary care, education, advocacy, and research support for persons with HIV. Second, the BEAT-HIV CAB provides individual experiences and community input into HIV cure research and gives updates to the broader community about the status of research. Third, basic, clinical/biomedical, and social scientists implement the scientific goals of the BEAT-HIV Collaboratory. In this paper, we aimed to highlight the strengths, challenges, lessons learned, and opportunities of the BEAT-HIV CEG model. We also present examples of collaborative community engagement projects. Our paper contributes to the literature on novel community engagement approaches beyond the CAB. Based on our experience to date using the CEG, a multi-part community engagement model could help move us towards the goal of inclusive, effective, equitable, and ethical engagement in HIV cure research.

11.
AIDS ; 37(8): 1203-1207, 2023 07 01.
Article En | MEDLINE | ID: mdl-37070542

OBJECTIVE: The aim of this study was to assess the susceptibility of HIV to two HIV monoclonal antibodies (bnAbs), 3BNC117 and 10-1074, in individuals with chronically antiretroviral therapy (ART) suppressed HIV infection. DESIGN: The susceptibility of bnAbs was determined using the PhenoSense mAb Assay, which is a cell-based infectivity assay designed to assess the susceptibility of luciferase-reporter pseudovirions. This assay is the only Clinical Laboratory Improvement Ammendment (CLIA)/College of American Pathologist (CAP) compliant screening test specifically developed for evaluating bnAb susceptibility in people with HIV infection. METHOD: The susceptibility of luciferase-reporter pseudovirions, derived from HIV-1 envelope proteins obtained from peripheral bloodmononuclear cells of 61 ART-suppressed individuals, to 3BNC117 and 10-1074 bnAbs was assessed using the PhenoSense mAb assay. Susceptibility was defined as an IC 90 of <2.0 µg/ml and 1.5 µg/ml for 3BNC117 and 10-1074, respectively. RESULTS: About half of the individuals who were chronically infected and virologically suppressed were found to harbor virus with reduced susceptibility to one or both of the tested bnAbs. CONCLUSIONS: The reduced combined susceptibility of 3BNC117 and 10-1074 highlights a potential limitation of using only two bnAbs for pre-exposure prophylaxis or treatment. Further studies are needed to define and validate the clinical correlates of bnAb susceptibility.


HIV Infections , HIV-1 , Humans , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , HIV Antibodies , Antibodies, Monoclonal/therapeutic use , Luciferases
12.
Cancer Cell ; 41(4): 740-756.e10, 2023 04 10.
Article En | MEDLINE | ID: mdl-36963401

ARID1A, encoding a subunit of the SWI/SNF complex, is mutated in ∼50% of clear cell ovarian carcinoma (OCCC) cases. Here we show that inhibition of the mevalonate pathway synergizes with immune checkpoint blockade (ICB) by driving inflammasome-regulated immunomodulating pyroptosis in ARID1A-inactivated OCCCs. SWI/SNF inactivation downregulates the rate-limiting enzymes in the mevalonate pathway such as HMGCR and HMGCS1, which creates a dependence on the residual activity of the pathway in ARID1A-inactivated cells. Inhibitors of the mevalonate pathway such as simvastatin suppresses the growth of ARID1A mutant, but not wild-type, OCCCs. In addition, simvastatin synergizes with anti-PD-L1 antibody in a genetic OCCC mouse model driven by conditional Arid1a inactivation and in a humanized immunocompetent ARID1A mutant patient-derived OCCC mouse model. Our data indicate that inhibition of the mevalonate pathway simultaneously suppresses tumor cell growth and boosts antitumor immunity by promoting pyroptosis, which synergizes with ICB in suppressing ARID1A-mutated cancers.


Carcinoma , Ovarian Neoplasms , Humans , Female , Mice , Animals , Mevalonic Acid , Pyroptosis , Nuclear Proteins/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Mutation , DNA-Binding Proteins/genetics , Transcription Factors/genetics
13.
Antimicrob Agents Chemother ; 67(4): e0160022, 2023 04 18.
Article En | MEDLINE | ID: mdl-36975214

Despite effective combination antiretroviral therapy (cART), people living with HIV (PLWH) continue to harbor replication-competent and transcriptionally active virus in infected cells, which in turn can lead to ongoing viral antigen production, chronic inflammation, and increased risk of age-related comorbidities. To identify new agents that may inhibit postintegration HIV beyond cART, we screened a library of 512 pure compounds derived from natural products and identified (-)-hopeaphenol as an inhibitor of HIV postintegration transcription at low to submicromolar concentrations without cytotoxicity. Using a combination of global RNA sequencing, plasmid-based reporter assays, and enzyme activity studies, we document that hopeaphenol inhibits protein kinase C (PKC)- and downstream NF-κB-dependent HIV transcription as well as a subset of PKC-dependent T-cell activation markers, including interleukin-2 (IL-2) cytokine and CD25 and HLA-DRB1 RNA production. In contrast, it does not substantially inhibit the early PKC-mediated T-cell activation marker CD69 production of IL-6 or NF-κB signaling induced by tumor necrosis factor alpha (TNF-α). We further show that hopeaphenol can inhibit cyclin-dependent kinase 9 (CDK9) enzymatic activity required for HIV transcription. Finally, it inhibits HIV replication in peripheral blood mononuclear cells (PBMCs) infected in vitro and dampens viral reactivation in CD4+ cells from PLWH. Our study identifies hopeaphenol as a novel inhibitor that targets a subset of PKC-mediated T-cell activation pathways in addition to CDK9 to block HIV expression. Hopeaphenol-based therapies could complement current antiretroviral therapy otherwise not targeting cell-associated HIV RNA and residual antigen production in PLWH.


HIV Infections , Stilbenes , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Kinase C/genetics , Cyclin-Dependent Kinase 9/metabolism , Leukocytes, Mononuclear/metabolism , Virus Replication , Virus Latency , Stilbenes/pharmacology , HIV Infections/metabolism , RNA
14.
J Nat Prod ; 86(3): 557-565, 2023 03 24.
Article En | MEDLINE | ID: mdl-36799121

The known Eremophila microtheca-derived diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid (1) was targeted for large-scale purification, as this bioactive plant compound has proven to be an attractive scaffold for semisynthetic studies and subsequent library generation. Compound 1 was converted to a selectively protected trimethyl derivative, 3-hydroxy-7,8-dimethoxyserrulat-14-en-19-oic acid methyl ester (2), using simple and rapid methylation conditions. The resulting scaffold 2 was reacted with a diverse series of commercially available isocyanates to generate an 11-membered carbamate-based library. The chemical structures of the 11 new semisynthetic analogues were fully characterized by spectroscopic and spectrometric analysis. All natural products and semisynthetic compounds were evaluated for their anthelmintic, antimalarial, and anti-HIV activities. Compound 3 was shown to elicit the greatest antiplasmodial activity of all compounds tested, with IC50 values of 4.6 and 11.6 µM against Plasmodium falciparum 3D7 and Dd2, respectively. Compound 11 showed the greatest inhibition of development to fourth-stage Haemonchus contortus larvae (L4) and induction of a skinny (Ski) phenotype (67.5% of nematodes) at 50 µM. Compound 7, which inhibited 59.0% of HIV production at 100 µg/mL, was the carbamate analogue that displayed the best antiviral activity.


Anti-Infective Agents , Antimalarials , Biological Products , Carbamates , Plant Extracts/chemistry , Antimalarials/pharmacology , Antimalarials/chemistry , Biological Products/chemistry , Plasmodium falciparum
15.
J Leukoc Biol ; 113(3): 229-230, 2023 03 01.
Article En | MEDLINE | ID: mdl-36806852
16.
J Leukoc Biol ; 113(3): 236-254, 2023 03 01.
Article En | MEDLINE | ID: mdl-36807444

A significant number of persons with coronavirus disease 2019 (COVID-19) experience persistent, recurrent, or new symptoms several months after the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This phenomenon, termed post-acute sequelae of SARS-CoV-2 (PASC) or long COVID, is associated with high viral titers during acute infection, a persistently hyperactivated immune system, tissue injury by NETosis-induced micro-thrombofibrosis (NETinjury), microbial translocation, complement deposition, fibrotic macrophages, the presence of autoantibodies, and lymphopenic immune environments. Here, we review the current literature on the immunological imbalances that occur during PASC. Specifically, we focus on data supporting common immunopathogenesis and tissue injury mechanisms shared across this highly heterogenous disorder, including NETosis, coagulopathy, and fibrosis. Mechanisms include changes in leukocyte subsets/functions, fibroblast activation, cytokine imbalances, lower cortisol, autoantibodies, co-pathogen reactivation, and residual immune activation driven by persistent viral antigens and/or microbial translocation. Taken together, we develop the premise that SARS-CoV-2 infection results in PASC as a consequence of acute and/or persistent single or multiple organ injury mediated by PASC determinants to include the degree of host responses (inflammation, NETinjury), residual viral antigen (persistent antigen), and exogenous factors (microbial translocation). Determinants of PASC may be amplified by comorbidities, age, and sex.


COVID-19 , Post-Acute COVID-19 Syndrome , Humans , SARS-CoV-2 , Leukocytes , Antigens, Viral , Autoantibodies , Disease Progression
17.
J Nat Prod ; 86(3): 582-588, 2023 03 24.
Article En | MEDLINE | ID: mdl-36657039

Thorectidiols isolated from the marine sponge Dactylospongia elegans (family Thorectidae, order Dictyoceratida) collected in Papua New Guinea are a family of symmetrical and unsymmetrical dimeric biphenyl meroterpenoid stereoisomers presumed to be products of oxidative phenol coupling of a co-occurring racemic monomer, thorectidol (3). One member of the family, thorectidiol A (1), has been isolated in its natural form, and its structure has been elucidated by analysis of NMR, MS, and ECD data. Acetylation of the sponge extract facilitated isolation of additional thorectidiol diacetate stereoisomers and the isolation of the racemic monomer thorectidol acetate (6). Racemic thorectidiol A (1) showed selective inhibition of the SARS-CoV-2 spike receptor binding domain (RBD) interaction with the host ACE2 receptor with an IC50 = 1.0 ± 0.7 µM.


COVID-19 , Porifera , Animals , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding , Porifera/metabolism
18.
Nat Immunol ; 24(2): 359-370, 2023 02.
Article En | MEDLINE | ID: mdl-36536105

Understanding the complexity of the long-lived HIV reservoir during antiretroviral therapy (ART) remains a considerable impediment in research towards a cure for HIV. To address this, we developed a single-cell strategy to precisely define the unperturbed peripheral blood HIV-infected memory CD4+ T cell reservoir from ART-treated people living with HIV (ART-PLWH) via the presence of integrated accessible proviral DNA in concert with epigenetic and cell surface protein profiling. We identified profound reservoir heterogeneity within and between ART-PLWH, characterized by new and known surface markers within total and individual memory CD4+ T cell subsets. We further uncovered new epigenetic profiles and transcription factor motifs enriched in HIV-infected cells that suggest infected cells with accessible provirus, irrespective of reservoir distribution, are poised for reactivation during ART treatment. Together, our findings reveal the extensive inter- and intrapersonal cellular heterogeneity of the HIV reservoir, and establish an initial multiomic atlas to develop targeted reservoir elimination strategies.


HIV Infections , HIV-1 , Humans , HIV-1/physiology , CD4-Positive T-Lymphocytes , Virus Latency/genetics , HIV Infections/drug therapy , HIV Infections/genetics , Epigenesis, Genetic , Viral Load , Anti-Retroviral Agents/therapeutic use
19.
AIDS ; 37(4): 571-577, 2023 03 15.
Article En | MEDLINE | ID: mdl-36460646

OBJECTIVE: The human endogenous protein galectin-9 (Gal-9) reactivates latently HIV-infected cells in vitro and ex vivo , which may allow for immune-mediated clearance of these cells. However, Gal-9 also activates several immune cells, which could negatively affect HIV persistence by promoting chronic activation/exhaustion. This potential 'double-edged sword' effect of Gal-9 raises the question of the overall impact of Gal-9 on HIV persistence in vivo . DESIGN: We used the BLT (bone marrow, liver, thymus) humanized mouse model to evaluate the impact of Gal-9 on HIV persistence in vivo during antiretroviral therapy (ART). METHODS: Two independent cohorts of ART-suppressed HIV-infected BLT mice were treated with either recombinant Gal-9 or phosphate-buffered saline control. Plasma viral loads and levels of tissue-associated HIV DNA and RNA were measured by qPCR. Immunohistochemistry and HIV RNAscope were used to quantify CD4 + T, myeloid, and HIV RNA+ cells in tissues. T cell activation and exhaustion were measured by flow cytometry, and plasma markers of inflammation were measured by multiplex cytokine arrays. RESULTS: Gal-9 did not induce plasma markers of inflammation or T cell markers of activation/exhaustion in vivo . However, the treatment significantly increased levels of tissue-associated HIV DNA and RNA compared to controls ( P  = 0.0007 and P  = 0.011, respectively, for cohort I and P  = 0.002 and P  = 0.005, respectively, for cohort II). RNAscope validated the Gal-9 mediated induction of HIV RNA in tissue-associated myeloid cells, but not T cells. CONCLUSIONS: Our study highlights the overall adverse effects of Gal-9 on HIV persistence and the potential need to block Gal-9 interactions during ART-suppressed HIV infection.


HIV Infections , HIV-1 , Humans , Mice , Animals , HIV-1/genetics , RNA , Galectins , Inflammation , CD4-Positive T-Lymphocytes
20.
AIDS Res Hum Retroviruses ; 39(8): 414-421, 2023 08.
Article En | MEDLINE | ID: mdl-35979886

Analytical treatment interruption (ATI), defined as a closely monitored clinical pause in antiretroviral therapy (ART), is a core component of many HIV cure-directed clinical studies. ATIs may cause significant physical and psychosocial risks for people living with HIV and, as a result, integrating participant and community perspectives into clinical trial designs that include an ATI is crucial to ensuring a successful and person-centered trial. We conducted semi-structured interviews with participants enrolling in the BEAT-2 cure-directed trial (NCT03588715). Interviews elicited participant motivations and decision-making processes for trial participation along with participants' perceptions of the ATI. Interviews were recorded, transcribed, and analyzed using a directed content analysis. Fourteen of 15 trial participants completed interviews. The majority were Black (79%) cisgender male (79%). Participants noted several significant motivating factors contributing to their desire to enroll in the HIV cure-directed clinical trial, the most prominent being a desire to find a cure for HIV and help others in the HIV community. HIV care teams were the most commonly identified resource for patients when making the decision to enroll in the trial, and family, friends, and romantic partners also played a significant role. Altruism was a primary motivation for participation, although participants also shared interest in learning about HIV science and research. Participants had a strong understanding of trial procedures and displayed significant trust in the study team to keep them informed and healthy during their participation. The ATI was a significant source of anxiety for participants. Their primary worry was that their prior antiretroviral therapy (ART) regimen would no longer be effective once they resumed ART. Despite these concerns, participants shared considerable excitement for continued participation in the trial and being a part of the search toward an HIV cure.


HIV Infections , Humans , Male , HIV Infections/psychology , Motivation , Anti-Retroviral Agents/therapeutic use
...