Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 14(9)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37754877

RESUMEN

This research investigates pH changes during the green synthesis of ZnO nanoparticles (NPs) and emphasises its importance in their physicochemical, antibacterial, and biological properties. Varying the synthesis pH from 8 to 12 using "Bravo de Esmolfe" apple extracts neither affected the morphology nor crystallinity of ZnO but impacted NP phytochemical loads. This difference is because alkaline hydrolysis of phytochemicals occurred with increasing pH, resulting in BE-ZnO with distinct phytocargos. To determine the toxicity of BE-ZnO NPs, Galleria mellonella was used as an alternative to non-rodent models. These assays showed no adverse effects on larvae up to a concentration of 200 mg/kg and that NPs excess was relieved by faeces and silk fibres. This was evaluated by utilising fluorescence-lifetime imaging microscopy (FLIM) to track NPs' intrinsic fluorescence. The antibacterial efficacy against Staphylococcus aureus was higher for BE-ZnO12 than for BE-ZnO8; however, a different trend was attained in an in vivo infection model. This result may be related to NPs' residence in larvae haemocytes, modulated by their phytocargos. This research demonstrates, for the first time, the potential of green synthesis to modulate the biosafety and antibacterial activity of NPs in an advanced G. mellonella infection model. These findings support future strategies to overcome antimicrobial resistance by utilizing distinct phytocargos to modulate NPs' action over time.

2.
ACS Biomater Sci Eng ; 9(5): 2376-2391, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37071118

RESUMEN

Currently, permanent vascular stents are fabricated using titanium and stainless steel implants that are nondegradable and offer high stability, but they have certain disadvantages. For example, the prolonged exposition of aggressive ions in the physiological media and the existence of defects in the oxide film create conditions for corrosion to occur, thus triggering unwanted biological events and compromising the mechanical integrity of the implants. Moreover, when the implant does not need to be permanent, there is the need to submit the patient for a second surgery for implant removal. As a solution for nonpermanent implants, biodegradable magnesium alloys have been deemed a promising substitute, for example, for cardiovascular-related applications and the construction of orthopedic devices. A biodegradable magnesium alloy (Mg-2.5Zn) reinforced by zinc and eggshell was employed in this study as an environment-conscious magnesium (eco) composite (Mg-2.5Zn-xES). Disintegrated melt deposition (DMD) was used to fabricate the composite. Experimental studies were conducted to investigate the biodegradation performance of Mg-Zn alloys containing 3 and 7 wt % eggshell (ES) in simulated body fluid (SBF) at 37 °C. Different corrosion techniques were used to study the corrosion behavior of the Mg-2.5Zn-xES composites, including weight loss measurements, hydrogen evolution, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning vibrating electrode technique (SVET). Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were employed to scrutinize the corroded surfaces' morphology and composition. The outcomes indicated that Mg-2.5Zn-3ES possesses the lowest degradation activity.


Asunto(s)
Aleaciones , Líquidos Corporales , Animales , Humanos , Aleaciones/química , Magnesio/análisis , Magnesio/química , Cáscara de Huevo , Prótesis e Implantes , Líquidos Corporales/química
3.
PLoS One ; 12(5): e0177355, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28486529

RESUMEN

The present work follows a previous report describing the antibacterial activity of silver camphorimine complexes of general formula [Ag(NO3)L]. The synthesis and demonstration of the antifungal and antibacterial activity of three novel [Ag(NO3)L] complexes (named 1, 2 and 3) is herein demonstrated. This work also shows for the first time that the previously studied complexes (named 4 to 8) also exert antifungal activity. The antibacterial activity of complexes was evaluated against Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia contaminans and Escherichia coli strains, while antifungal activity was tested against the Candida species C. albicans, C. glabrata, C. parapsilosis and C. tropicalis. The antimicrobial activity of the complexes ranged from very high (complex 4) to moderate (complex 6) or low (complex 8), depending on the structural and electronic characteristics of the camphorimine ligands. Notably, the highest antibacterial and anti-Candida activities do not coincide in the same complex and in some cases they were even opposite, as is the case of complex 4 which exhibits a high anti-bacterial and low antifungal activity. These distinct results suggest that the complexes may have different mechanisms against prokaryotic and eukaryotic cells. The antifungal activity of the Ag(I) camphorimine complexes (in particular of complex 1) was found to be very high (MIC = 2 µg/mL) against C. parapsilosis, being also registered a prominent activity against C. tropicalis and C. glabrata. None of the tested compounds inhibited C. albicans growth, being this attributed to the ability of these yeast cells to mediate the formation of less toxic Ag nanoparticles, as confirmed by Scanning Electron Microscopy images. The high antibacterial and anti-Candida activities of the here studied camphorimine complexes, especially of complexes 1 and 7, suggests a potential therapeutic application for these compounds.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Candida/efectos de los fármacos , Complejos de Coordinación/farmacología , Espectroscopía de Resonancia Magnética con Carbono-13 , Complejos de Coordinación/química , Pruebas de Sensibilidad Microbiana , Espectroscopía de Protones por Resonancia Magnética
4.
Sci Rep ; 7: 39980, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28051143

RESUMEN

Consecutive layers of Ni(OH)2 and Co(OH)2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH)2, Co(OH)2, Ni1/2Co1/2(OH)2 and layered films of Ni(OH)2 on Co(OH)2 and Co(OH)2 on Ni(OH)2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH)2 films and of particles agglomerates in the Ni(OH)2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH)2 on Co(OH)2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g-1 at the specific current of 1 A g-1. The hybrid cell using Ni(OH)2 on Co(OH)2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g-1 and 37.8 W h g-1 at specific powers of 0.2 W g-1 and 2.45 W g-1, respectively.

5.
Phys Chem Chem Phys ; 18(17): 12368-74, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-27087173

RESUMEN

Current transient evolution and in situ electrochemical AFM were used to study the initial stages of growth of electrochemically deposited nickel cobalt hydroxide films for energy storage applications. Current transients were taken at constant potentials, from -700 mV to -1000 mV, with a step of 50 mV. The current transients were fitted with three different nucleation models: Scharifker-Hill, Scharifker-Mostany and Mirkin-Nilov-Heerman-Tarallo and the results revealed that film growth was governed by a 3D instantaneous nucleation mechanism. In situ electrochemical AFM studies confirmed the instantaneous nucleation mechanism and revealed the early stage formation of nanosheets. The in situ AFM results were supported by the ex situ FEG-SEM results, showing the formation of nanoneedles at the first stages of nucleation and the growth into nanosheets with the increasing deposition time.

6.
Nanoscale ; 7(29): 12452-9, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26135715

RESUMEN

This work reports the fabrication, by electrodeposition and post-thermal annealing, of hybrid electrodes for high rate electrochemical energy storage composed of nickel manganese oxide (Ni0.86Mn0.14O) nanosheets over 3D open porous dendritic NiCu foams. The hybrid electrodes are made of two different percolation networks of nanosheets and dendrites, and exhibit a specific capacitance value of 848 F g(-1) at 1 A g(-1). The electrochemical tests revealed that the electrodes display an excellent rate capability, characterized by capacitance retention of approximately 83% when the applied current density increases from 1 A g(-1) to 20 A g(-1). The electrodes also evidenced high charge-discharge cycling stability, which attained 103% after 1000 cycles.

7.
J Hazard Mater ; 119(1-3): 145-52, 2005 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-15752859

RESUMEN

Surface composition changes at stainless steel anodes in an electrochemical reactor applied for the electrochemical treatment of cuprocyanide-containing wastewaters operating under different hydrodynamic conditions were investigated. Under highly alkaline conditions in situ generation of a surface film on the anode with catalytic properties towards cyanide electrolysis was observed. X-ray photoelectron spectroscopy (XPS) results demonstrated that only copper oxi-hydroxide compounds constitute the surface film developed on the stainless steel anodes, as no traces of N- and C-containing compounds were observed. The collected XPS spectra revealed relevant details concerning the oxidation states of copper in the film, and the products Cu2O, CuO and Cu(OH)2 were identified on the surface of the anodes. However, the quantitative proportions of the individual products differ and depend on the type of mixing employed during reactor operation.


Asunto(s)
Cobre/química , Cianuros/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Catálisis , Cobre/aislamiento & purificación , Cianuros/aislamiento & purificación , Electroquímica , Electrodos , Galvanoplastia , Movimientos del Agua , Contaminantes del Agua/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...