Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
J Vis Exp ; (199)2023 09 01.
Article En | MEDLINE | ID: mdl-37677033

A model of persisting lower back pain can be induced in mice with the simple methodology described herein. Step-by-step methods for simple, rapid induction of a persisting back pain model in mice are provided here using an injection of urokinase-type plasminogen activator (urokinase), a serine protease present in humans and other animals. The methodology for induction of persisting lower back pain in mice involves a simple injection of urokinase along the ligamentous insertion region of the lumbar spine. The urokinase inflammatory agent activates plasminogen to plasmin. Typically, the model can be induced within 10 min and hypersensitivity persists for at least 8 weeks. Hypersensitivity, gait disturbance, and other standard anxiety- and depression-like measures can be tested in the persisting model. Back pain is the most prevalent type of pain. To improve awareness of back pain, the International Association for the Study of Pain (IASP) named 2021 the "Global Year about Back Pain" and 2022 the "Global Year for Translating Pain Knowledge to Practice." One limitation of the therapeutic advancement of pain therapeutics is the lack of suitable models for testing persistent and chronic pain. The features of this model are suitable for testing potential therapeutics aimed at the reduction of back pain and its ancillary characteristics, contributing to IASP's naming 2022 as the Global Year for Translating Pain Knowledge to Practice.


Chronic Pain , Hypersensitivity , Low Back Pain , Humans , Animals , Mice , Urokinase-Type Plasminogen Activator , Back Pain , Serine Proteases , Disease Models, Animal
2.
Int J Mol Sci ; 24(13)2023 Jul 03.
Article En | MEDLINE | ID: mdl-37446213

A robust cell-free platform technology, ribosome display in combination with cloning, expression, and purification was utilized to develop single chain Fragment variable (scFv) antibody variants as pain therapy directed at the mouse cholecystokinin B (CCK-B) receptor. Three effective CCK-B peptide-specific scFvs were generated through ribosomal display technology. Soluble expression and ELISA analysis showed that one antibody, scFv77-2 had the highest binding and could be purified from bacterial cells in large quantities. Octet measurements further revealed that the CCK-B scFv77-2 antibody had binding kinetics of KD = 1.794 × 10-8 M. Molecular modeling and docking analyses suggested that the scFv77-2 antibody shaped a proper cavity to embed the whole CCK-B peptide molecule and that a steady-state complex was formed relying on intermolecular forces, including hydrogen bonding, electrostatic force, and hydrophobic interactions. Thus, the scFv antibody can be applied for mechanistic intermolecular interactions and functional in vivo studies of CCK-BR. The high affinity scFv77-2 antibody showed good efficacy with binding to CCK-BR tested in a chronic pain model. In vivo studies validated the efficacy of the CCK-B receptor (CCK-BR) scFv77-2 antibody as a potential therapy for chronic trigeminal nerve injury-induced pain. Mice were given a single dose of the CCK-B receptor (CCK-BR) scFv antibody 3 weeks after induction of a chronic trigeminal neuropathic pain model, during the transition from acute to chronic pain. The long-term effectiveness for the reduction of mechanical hypersensitivity was evident, persisting for months. The anxiety- and depression-related behaviors typically accompanying persisting hypersensitivity subsequently never developed in the mice given CCK-BR scFv. The effectiveness of the antibody is the basis for further development of the lead CCK-BR scFv as a promising non-opioid therapeutic for chronic pain and the long-term reduction of chronic pain- and anxiety-related behaviors.


Chronic Pain , Neuralgia , Single-Chain Antibodies , Animals , Mice , Molecular Docking Simulation , Peptide Library , Receptor, Cholecystokinin B , Chronic Pain/therapy , Ribosomes/metabolism
3.
Mol Pain ; 19: 17448069231186592, 2023.
Article En | MEDLINE | ID: mdl-37351900

Dynorphin A (1-17) (DynA17) has been identified as a key regulator of both sensory and affective dimensions of chronic pain. Following nerve injury, increases in DynA17 have been reported in the spinal and supraspinal areas involved in chronic pain. Blocking these increases provides therapeutic benefits in preclinical chronic pain models. Although heavily characterized at the behavioral level, how DynA17 mediates its effects at the cellular physiological level has not been investigated. In this report, we begin to decipher how DynA17 mediates its direct effects on mouse dorsal root ganglion (DRG) cells and how intrathecal administration modifies a key node in the pain axis, the periaqueductal gray These findings build on the plethora of literature defining DynA17 as a critical neuropeptide in the pathophysiology of chronic pain syndromes.


Chronic Pain , Neuropeptides , Mice , Animals , Dynorphins , Ganglia, Spinal
4.
Neuropharmacology ; 218: 109233, 2022 11 01.
Article En | MEDLINE | ID: mdl-36007855

Chemotherapy-induced neuropathic pain (CINP) is a debilitating and difficult-to-treat side effect of chemotherapeutic drugs. CINP is marked with oxidative stress and neuronal hypersensitivities. The peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates genes involved in oxidative stress and inflammation. We hypothesize that PPARγ agonists are protective against CIPN by reducing oxidative stress and inhibiting neuronal hypersensitivities. To test our hypothesis, acute or chronic CIPN was introduced by short or long-term treatment of oxaliplatin in BALB/c mice. CIPN mice were treated with either a novel blood-brain barrier (BBB) penetrable PPARγ agonist ELB00824, or a BBB non-penetrable PPARγ agonist pioglitazone, or vehicle. Cold allodynia, mechanical allodynia, motor coordination, sedation and addiction were measured with dry ice, von Frey filaments, beam-walking tests, and conditioned place preference, respectively. Oxidative stress was accessed by measuring byproducts of protein oxidation (carbonyl and 3-Nitrotyrosine) and lipid peroxidation [Thiobarbituric acid reactive substances (TBARS)], as wells as gene expression of Cat, Sod2, Ppargc1a. The effects of ELB00824 on nociceptor excitability were measured using whole-cell electrophysiology of isolated dorsal root ganglion neurons. Preemptive ELB00824, but not pioglitazone, reduced oxaliplatin-induced cold and mechanical allodynia and oxidative stress. ELB0824 suppressed oxaliplatin-induced firing in IB4- neurons. ELB00824 did not cause motor discoordination or sedation/addiction or reduce the antineoplastic activity of oxaliplatin (measured with an MTS-based cell proliferation assay) in a human colon cancer cell line (HCT116) and a human oral cancer cell line (HSC-3). Our results demonstrated that ELB00824 prevents oxaliplatin-induced pain, likely via inhibiting neuronal hypersensitivities and oxidative stress.


Antineoplastic Agents , Hypersensitivity , Neuralgia , Animals , Humans , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/prevention & control , Hypersensitivity/drug therapy , Mice , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/prevention & control , Neurons/metabolism , Oxaliplatin , Oxidative Stress , PPAR gamma/metabolism
5.
Int J Mol Sci ; 22(24)2021 Dec 19.
Article En | MEDLINE | ID: mdl-34948407

Non-opioid single-chain variable fragment (scFv) small antibodies were generated as pain-reducing block of P2X4R receptor (P2X4R). A panel of scFvs targeting an extracellular peptide sequence of P2X4R was generated followed by cell-free ribosome display for recombinant antibody selection. After three rounds of bio-panning, a panel of recombinant antibodies was isolated and characterized by ELISA, cross-reactivity analysis, and immunoblotting/immunostaining. Generated scFv antibodies feature binding activity similar to monoclonal antibodies but with stronger affinity and increased tissue penetrability due to their ~30% smaller size. Two anti-P2X4R scFv clones (95, 12) with high specificity and affinity binding were selected for in vivo testing in male and female mice with trigeminal nerve chronic neuropathic pain (FRICT-ION model) persisting for several months in untreated BALBc mice. A single dose of P2X4R scFv (4 mg/kg, i.p.) successfully, completely, and permanently reversed chronic neuropathic pain-like measures in male mice only, providing retention of baseline behaviors indefinitely. Untreated mice retained hypersensitivity, and developed anxiety- and depression-like behaviors within 5 weeks. In vitro P2X4R scFv 95 treatment significantly increased the rheobase of larger-diameter (>25 µm) trigeminal ganglia (TG) neurons from FRICT-ION mice compared to controls. The data support use of engineered scFv antibodies as non-opioid biotherapeutic interventions for chronic pain.


Chronic Pain/drug therapy , Purinergic P2X Receptor Antagonists/therapeutic use , Single-Chain Antibodies/therapeutic use , Animals , Antibody Affinity , Cells, Cultured , Chronic Pain/immunology , Female , Male , Mice , Peptide Library , Purinergic P2X Receptor Antagonists/chemistry , Purinergic P2X Receptor Antagonists/immunology , Receptors, Purinergic P2X4/chemistry , Receptors, Purinergic P2X4/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/immunology
6.
Cureus ; 13(5): e14835, 2021 May 04.
Article En | MEDLINE | ID: mdl-34104585

The intrathecal drug delivery system (IDDS) is successfully utilized for the treatment of chronic pain conditions; however, they are associated with complications related to human error and system failure. A case report is presented of a patient with opioid withdrawal (OW) secondary to assumed catheter microfracture. Interrogation of the IDDS allowed for the collection of pre- and post-treatment/stabilization cerebrospinal fluid (CSF), which is used to investigate the possible physiological determinants of OW. A 46-year-old female with a history of low back pain after traumatic low back injury status post-IDDS placement for failed back surgery syndrome presented with signs and symptoms concerning for OW. After every other possible explanation was ruled out, it was hypothesized that there may be IDDS catheter microfracture(s), and catheter replacement led to symptom resolution. There were no significant differences in cytokine levels tested in pre-CSF versus post-CSF samples. Whole-cell patch-clamp electrophysiology analysis of human-induced pluripotent stem cell-derived nociceptors after treatment with pre- and post-CSF samples demonstrated modulation of action potential waveform. In patients presenting with acute OW attribution IDDS malfunction, catheter microfracture must be in the differential, and non-conventional interrogation of the IDDS catheter should be considered. The possible differences in pre-CSF and post-CSF may be more complicated than previously postulated, as there were no significant differences in cytokine profiles; however, treatment of in vitro neurons with pre- and post-CSF resulted in differential neuronal excitability, which may account for some of the symptoms of OW.

7.
Neuroimage ; 223: 117343, 2020 12.
Article En | MEDLINE | ID: mdl-32898676

Chronic pain often predicts the onset of psychological distress. Symptoms including anxiety and depression after pain chronification reportedly are caused by brain remodeling/recruitment of the limbic and reward/aversion circuitries. Pain is the primary precipitating factor that has caused opioid overprescribing and continued overuse of opioids leading to the current opioid epidemic. Yet experimental pain therapies often fail in clinical trials. Better understanding of underlying pathologies contributing to pain chronification is needed to address these chronic pain related issues. In the present study, a chronic neuropathic pain model persisting 10 weeks was studied. The model develops both anxiety- and pain-related behavioral measures to mimic clinical pain. The manganese-enhanced magnetic resonance imaging (MEMRI) utilized improved MRI signal contrast in brain regions with higher neuronal activity in the rodent chronic constriction trigeminal nerve injury (CCI-ION) model. T1-weighted MEMRI signal intensity was increased compared to controls in supraspinal regions of the anxiety and aversion circuitry, including anterior cingulate gyrus (ACC), amygdala, habenula, caudate, ventrolateral and dorsomedial periaqueductal gray (PAG). Despite continuing mechanical hypersensitivity, MEMRI T1 signal intensity as the neuronal activity measure, was not significantly different in thalamus and decreased in somatosensory cortex (S1BF) of CCI-ION rats compared to naïve controls. This is consistent with decreased fMRI BOLD signal intensity in thalamus and cortex of patients with longstanding trigeminal neuropathic pain reportedly associated with gray matter volume decrease in these regions. Significant increase in MEMRI T2 signal intensity in thalamus of CCI-ION animals was indication of tissue water content, cell dysfunction and/or reactive astrogliosis. Decreased T2 signal intensity in S1BF cortex of rats with CCI-ION was similar to findings of reduced T2 signals in clinical patients with chronic orofacial pain indicating prolonged astrocyte activation. These findings support use of MEMRI and chronic rodent models for preclinical studies and therapeutic trials to reveal brain sites activated only after neuropathic pain has persisted in timeframes relevant to clinical pain and to observe treatment effects not possible in short-term models which do not have evidence of anxiety-like behaviors. Potential improvement is predicted in the success rate of preclinical drug trials in future studies with this model.


Anxiety/physiopathology , Brain/physiopathology , Neuralgia/physiopathology , Animals , Anxiety/etiology , Brain Mapping/methods , Contrast Media , Magnetic Resonance Imaging/methods , Male , Manganese , Neural Pathways/physiopathology , Neuralgia/complications , Rats, Sprague-Dawley
8.
Life (Basel) ; 10(5)2020 May 18.
Article En | MEDLINE | ID: mdl-32443500

BACKGROUND: Few models exist that can control for placebo and expectancy effects commonly observed in clinical trials measuring 'Cannabis' pharmacodynamics. We used the Foramen Rotundum Inflammatory Constriction Trigeminal Infraorbital Nerve injury (FRICT-ION) model to measure the effect of "full-spectrum" whole plant extracted hemp oil on chronic neuropathic pain sensitivity in mice. METHODS: Male BALBc mice were submitted to the FRICT-ION chronic neuropathic pain model with oral insertion through an incision in the buccal/cheek crease of 3 mm of chromic gut suture (4-0). The suture, wedged along the V2 trigeminal nerve branch, creates a continuous irritation that develops into secondary mechanical hypersensitivity on the snout. Von Frey filament stimuli on the mouse whisker pad was used to assess the mechanical pain threshold from 0-6 h following dosing among animals (n = 6) exposed to 5 µL of whole plant extracted hemp oil combined with a peanut butter vehicle (0.138 mg/kg), the vehicle alone (n = 3) 7 weeks post-surgery, or a naïve control condition (n = 3). RESULTS: Mechanical allodynia was alleviated within 1 h (d = 2.50, p < 0.001) with a peak reversal effect at 4 h (d = 7.21, p < 0.001) and remained significant throughout the 6 h observation window. There was no threshold change on contralateral whisker pad after hemp oil administration, demonstrating the localization of anesthetic response to affected areas. CONCLUSION: Future research should focus on how whole plant extracted hemp oil affects multi-sensory and cognitive-attentional systems that process pain.

9.
Bio Protoc ; 10(8): e3591, 2020 Apr 20.
Article En | MEDLINE | ID: mdl-33659557

An easily induced preclinical trigeminal neuropathic nerve injury model is described here for the study of chronic pain, the model acronym FRICT-ION (Foramen Rotundum Inflammatory Constriction Trigeminal InfraOrbital Nerve). In patients, neuropathic pain is thought to be related to vascular alignment or multiple sclerosis along this small trigeminal nerve branch (V2) innervating the maxillary teeth and middle third of the face. With no detectable outward physical signs, the FRICT-ION model is ideal for blinded studies. The acronym FRICT-ION applied relates to the persistence of the trigeminal neuropathic pain model likely due to sliding irritation with normal chewing in the mice. A step-by-step method to induce the mild chronic rodent neuropathic pain model is described here. The surgery is performed orally through a tiny surgical slit inside the cheek crease to align a chromic gut suture irritant along the nerve as it passes into the skull. The model allows testing of non-evoked subjective measures and evoked quantitative mechanical hypersensitivity (allodynia) testing with von Frey filaments through at least 10-14 weeks (100 days). Anxiety and depression behaviors develop within 3-6 weeks relevant to the affective component of chronic pain. While many pain drugs have failed based on testing performed in the acute animal models available, the more stable and easily replicated trigeminal inflammatory compression model is the better suited for understanding both mechanistic and affective components of nerve injury-induced chronic neuropathic pain states as well as the more ideal for preclinical trials of novel non-opioid pain relief therapies.

11.
Inhal Toxicol ; 29(3): 106-112, 2017 02.
Article En | MEDLINE | ID: mdl-28413916

OBJECTIVE: House dust mite (HDM) exposure is used to model experimental asthma in mice. However, a direct comparison of inflammatory responses following continuous versus intermittent HDM exposure has not been reported. Therefore, we investigated whether the HDM dose at sensitization or challenge affects extent of inflammation in mice that were either continuously or intermittently sensitized with HDM. MATERIALS AND METHODS: C57BL/6 mice received either 10 continuous exposures with 10 µg HDM per exposure or two intermittent HDM exposures over a period of two weeks and were subsequently challenged by three instillations with HDM during the third week. For the intermittent model, mice were sensitized with 1 or 10 µg HDM and challenged on three consecutive days with 1 or 10 µg HDM. Inflammatory cells in the bronchoalveolar lavage fluid and epithelial cell hyperplasia and mucous cell metaplasia were quantified. RESULTS: Significantly higher levels of inflammation and mucous cell metaplasia were observed when mice were sensitized intermittently compared with continuously. Intermittent sensitization and challenge with 10 µg HDM caused maximum inflammation, mucous cell metaplasia, and epithelial cell hyperplasia. However, sensitization with 1 µg HDM only also showed increased inflammation when challenged with 10 µg HDM. DISCUSSION: These findings suggest major differences in adaptive immunity, depending on the sensitization protocol. CONCLUSIONS: Because of significant differences, the HDM sensitization protocol should be carefully considered when designing studies to investigate the underlying mechanisms of immunity in mouse models of asthma.


Allergens/administration & dosage , Hypersensitivity/immunology , Inflammation/immunology , Pyroglyphidae/immunology , Adaptive Immunity , Allergens/immunology , Animals , Bronchoalveolar Lavage Fluid/immunology , Epithelial Cells/pathology , Hyperplasia/pathology , Hypersensitivity/pathology , Inflammation/pathology , Lung/immunology , Male , Mice, Inbred C57BL
...