Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 137(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38506228

RESUMEN

Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development through controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scission machinery in plants, but the precise roles of these proteins in this process are not fully understood. Here, we characterised the roles of the plant dynamin-related protein 2 (DRP2) family (hereafter DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to recruiters of dynamins, such as endophilin and amphiphysin, in CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the sh3p123 triple mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggest that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that, despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Dinaminas , Endocitosis , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clatrina/metabolismo , Clatrina/genética , Dinaminas/metabolismo , Dinaminas/genética , Endocitosis/genética , Proteínas de Unión al GTP , Mutación/genética
2.
Cell ; 187(1): 130-148.e17, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38128538

RESUMEN

The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.


Asunto(s)
Embryophyta , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Embryophyta/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Fosforilación , Plantas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Algáceas/metabolismo
3.
Cells ; 12(11)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37296587

RESUMEN

Olive (Olea europeae L.) salinity stress induces responses at morphological, physiological and molecular levels, affecting plant productivity. Four olive cultivars with differential tolerance to salt were grown under saline conditions in long barrels for regular root growth to mimic field conditions. Arvanitolia and Lefkolia were previously reported as tolerant to salinity, and Koroneiki and Gaidourelia were characterized as sensitive, exhibiting a decrease in leaf length and leaf area index after 90 days of salinity. Prolyl 4-hydroxylases (P4Hs) hydroxylate cell wall glycoproteins such as arabinogalactan proteins (AGPs). The expression patterns of P4Hs and AGPs under saline conditions showed cultivar-dependent differences in leaves and roots. In the tolerant cultivars, no changes in OeP4H and OeAGP mRNAs were observed, while in the sensitive cultivars, the majority of OeP4Hs and OeAGPs were upregulated in leaves. Immunodetection showed that the AGP signal intensity and the cortical cell size, shape and intercellular spaces under saline conditions were similar to the control in Arvanitolia, while in Koroneiki, a weak AGP signal was associated with irregular cells and intercellular spaces, leading to aerenchyma formation after 45 days of NaCl treatment. Moreover, the acceleration of endodermal development and the formation of exodermal and cortical cells with thickened cell walls were observed, and an overall decrease in the abundance of cell wall homogalacturonans was detected in salt-treated roots. In conclusion, Arvanitolia and Lefkolia exhibited the highest adaptive capacity to salinity, indicating that their use as rootstocks might provide increased tolerance to irrigation with saline water.


Asunto(s)
Olea , Prolil Hidroxilasas , Cloruro de Sodio/farmacología , Estrés Salino , Procolágeno-Prolina Dioxigenasa
4.
Nature ; 609(7927): 575-581, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071161

RESUMEN

The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinasas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Corriente Citoplasmática , Concentración de Iones de Hidrógeno , Ácidos Indolacéticos/metabolismo , Mutación , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasas de Translocación de Protón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA