Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 177: 117000, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38941895

RESUMEN

Alzheimer's disease (AD) is characterized by cognitive impairment, loss of learning and memory, and abnormal behaviors. Scopolamine (SCOP) is a non-selective antagonist of muscarinic acetylcholine receptors that exhibits the behavioral and molecular hallmarks of AD. Vanillic acid (VA), a phenolic compound, is obtained from the roots of a traditional plant called Angelica sinensis, and has several pharmacologic effects, including antimicrobial, anti-inflammatory, anti-angiogenic, anti-metastatic, and antioxidant properties. Nevertheless, VA's neuroprotective potential associated with the memory has not been thoroughly investigated. Therefore, this study investigated whether VA treatment has an ameliorative effect on the learning and memory impairment induced by SCOP in rats. Behavioral experiments were utilized to assess the learning and memory performance associated with the hippocampus. Using western blotting analysis and assay kits, the neuronal damage, oxidative stress, and acetylcholinesterase activity responses of hippocampus were evaluated. Additionally, the measurement of long-term potentiation was used to determine the function of synaptic plasticity in organotypic hippocampal slice cultures. In addition, the synaptic vesicles' density and the length and width of the postsynaptic density were evaluated using electron microscopy. Consequently, the behavioral, biochemical, electrophysiological, and ultrastructural analyses revealed that VA treatment prevents learning and memory impairments caused by SCOP in rats. The study's findings suggest that VA has a neuroprotective effect on SCOP-induced learning and memory impairment linked to the hippocampal cholinergic system, oxidative damage, and synaptic plasticity. Therefore, VA may be a prospective therapeutic agent for treating AD.

2.
Appl Microsc ; 54(1): 2, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38253782

RESUMEN

The neuroprotective effects of umbelliferone (UMB) were visualized in three-dimensional (3D) images on vesicle density changes of organotypic hippocampal slice tissues (OHSCs) induced by scopolamine by high voltage electron microscopy. Observations revealed that the number of vesicles decreased in OHSCs induced by scopolamine, and UMB was found to inhibit scopolamine-induced reduction in vesicles, resulting in an increase in vesicle count. These 3D models provide valuable insight for understanding the increase of synapse vesicles in hippocampal tissues treated with UMB.

3.
Nat Commun ; 14(1): 1111, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849521

RESUMEN

Transcription factors (TFs) are transported from the cytoplasm to the nucleus and disappear from the nucleus after they regulate gene expression. Here, we discover an unconventional nuclear export of the TF, orthodenticle homeobox 2 (OTX2), in nuclear budding vesicles, which transport OTX2 to the lysosome. We further find that torsin1a (Tor1a) is responsible for scission of the inner nuclear vesicle, which captures OTX2 using the LINC complex. Consistent with this, in cells expressing an ATPase-inactive Tor1aΔE mutant and the LINC (linker of nucleoskeleton and cytoskeleton) breaker KASH2, OTX2 accumulated and formed aggregates in the nucleus. Consequently, in the mice expressing Tor1aΔE and KASH2, OTX2 could not be secreted from the choroid plexus for transfer to the visual cortex, leading to failed development of parvalbumin neurons and reduced visual acuity. Together, our results suggest that unconventional nuclear egress and secretion of OTX2 are necessary not only to induce functional changes in recipient cells but also to prevent aggregation in donor cells.


Asunto(s)
Núcleo Celular , Genes Homeobox , Animales , Ratones , Lisosomas , División Celular , Matriz Nuclear , Vesícula
4.
Cell Metab ; 35(2): 345-360.e7, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754021

RESUMEN

Mitochondrial components have been abundantly detected in bone matrix, implying that they are somehow transported extracellularly to regulate osteogenesis. Here, we demonstrate that mitochondria and mitochondrial-derived vesicles (MDVs) are secreted from mature osteoblasts to promote differentiation of osteoprogenitors. We show that osteogenic induction stimulates mitochondrial fragmentation, donut formation, and secretion of mitochondria through CD38/cADPR signaling. Enhancing mitochondrial fission and donut formation through Opa1 knockdown or Fis1 overexpression increases mitochondrial secretion and accelerates osteogenesis. We also show that mitochondrial fusion promoter M1, which induces Opa1 expression, impedes osteogenesis, whereas osteoblast-specific Opa1 deletion increases bone mass. We further demonstrate that secreted mitochondria and MDVs enhance bone regeneration in vivo. Our findings suggest that mitochondrial morphology in mature osteoblasts is adapted for extracellular secretion, and secreted mitochondria and MDVs are critical promoters of osteogenesis.


Asunto(s)
Mitocondrias , Osteogénesis , Osteogénesis/fisiología , Mitocondrias/metabolismo , Osteoblastos/metabolismo , Dinámicas Mitocondriales , Diferenciación Celular
5.
Adv Healthc Mater ; 12(11): e2202358, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36644959

RESUMEN

UBA6-specific E2 conjugation enzyme 1 (USE1) is frequently overexpressed in lung cancer patients. Moreover, the critical role of USE1 in the progression of human lung cancer is also indicated. As the next step, the authors aim to develop USE1-targeted therapeutic agents based on RNA interference (RNAi). In this study, a lipid-modified DNA carrier, namely U4T, which consists of four consecutive dodec-1-ynyluracil (U) nucleobases to increase the cell permeability of siRNA targeting of USE1 is introduced. The U4Ts aggregate to form micelles, and the USE1-silencing siRNA-incorporated soft spherical nucleic acid aggregate (siSNA) can be created simply through base-pairing with siRNA. Treatment with siSNA is effective in suppressing tumor growth in vivo as well as cell proliferation, migration, and invasion of lung cancer cells. Furthermore, siSNA inhibited tumor cell growth by inducing cell cycle arrest in the G1 phase and apoptosis. Thus, the anti-tumor efficacy of siSNA in lung cancer cell lines and that siSNA possesses effective cell-penetrating ability without using cationic transfection moieties are confirmed. Collectively, these results suggest that siSNA can be applied to the clinical application of RNAi-based therapeutics for lung cancer treatment.


Asunto(s)
Neoplasias Pulmonares , Humanos , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Puntos de Control del Ciclo Celular , Interferencia de ARN , Proliferación Celular , Apoptosis
6.
J Eukaryot Microbiol ; 69(4): e12921, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35506426

RESUMEN

Euduboscquella species differ from most other syndinean dinoflagellates by having mononucleate trophonts, but resemble species of Amoebophrya and Sphaeripara by episome-hyposome differentiation and cortical complexity. Cytology and development of Euduboscquella species are well characterized, but their ultrastructure remains essentially unexplored. Transmission electron microscopy of Euduboscquella cachoni trophonts, tomont, and sporocytes revealed previously unrecognized structures. Initially dense, fibrous chromosomes uncoiled during early infection, with condensed chromosomes absent over much of the growth cycle recondensing at trophont maturity. The hyposomal amphiesma was two appressed membranes, the episomal cortex was alveolate, and a supraepisomal cavity limited by membrane enclosed the episome. Pseudopod-like extensions of the hyposome during mid infection may facilitate osmotrophic nutrition. The pharyngeal lamina appears to lack ingestatory function; however, transcortical transport of particles occurred via the supraepisomal cavity and episomal micropores. Microtubules originating from the electron-opaque perinema bordering the episome, formed an episomal skeleton hypothesized to function with the pharyngeal lamina, perinema, and the paired membranes of the supraepisomal cavity to effect parasite egress and ingestion of host material. Trichocysts absent during early infection developed during late infection and reached maturity during sporogenesis, suggesting functional importance in spore survival or infection.


Asunto(s)
Dinoflagelados , Animales , Dinoflagelados/ultraestructura , Estadios del Ciclo de Vida , Microscopía Electrónica de Transmisión , Orgánulos/ultraestructura
7.
J Periodontal Res ; 57(4): 799-810, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35607865

RESUMEN

BACKGROUND AND OBJECTIVE: Adherens junctions (AJs) and tight junctions (TJs) are known to play a crucial role in maintaining the physical barrier function of the epithelium. Here, we aimed to characterize the distribution of AJs and TJs throughout the gingival epithelium and to obtain insights into the physiological importance of these junctional structures. METHODS: Sections of mouse gingival tissue were examined using transmission electron microscopy (TEM) and bio-high voltage electron microscopy tomography. The gingival sections were stained for E-cadherin and JAM-A as markers of AJs and TJs, respectively, and examined using confocal microscopy and lattice structured illumination microscopy. Bacteria within the gingival epithelium were examined using in situ hybridization. RESULTS: Junctional structures, including desmosomes, AJs, and TJs, were observed throughout the gingival epithelium. The expression levels of E-cadherin were particularly low in the granular/keratinized layers of the oral epithelium (OE), while extremely low JAM-A levels were detected in the granular/keratinized layers of the sulcular epithelium (SE). The three-dimensional rendering of the junctional structures revealed that both AJs and TJs in the gingival epithelium formed discontinuous short bands or patches. Interestingly, strong bacterial signals were observed at the granular/keratinized layers of both SE and OE, but a few bacteria were detected within the junctional epithelium (JE) and the basal/spinous layers of the SE and OE. CONCLUSIONS: AJs and TJs form a discontinuous barrier throughout paracellular passage in the gingival epithelium; nevertheless, they seem to play an important role in defending against invading bacteria.


Asunto(s)
Uniones Adherentes , Uniones Estrechas , Uniones Adherentes/metabolismo , Animales , Bacterias/metabolismo , Cadherinas/metabolismo , Epitelio/metabolismo , Ratones , Uniones Estrechas/metabolismo
8.
Mol Metab ; 55: 101402, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838715

RESUMEN

OBJECTIVE: Diet-induced obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which instigates severe metabolic disorders, including cirrhosis, hepatocellular carcinoma, and type 2 diabetes. We have shown that hepatic depletion of CREB regulated transcription co-activator (CRTC) 2 protects mice from the progression of diet-induced fatty liver phenotype, although the exact mechanism by which CRTC2 modulates this process is elusive to date. Here, we investigated the role of hepatic CRTC2 in the instigation of NAFLD in mammals. METHODS: Crtc2 liver-specific knockout (Crtc2 LKO) mice and Crtc2 flox/flox (Crtc2 f/f) mice were fed a high fat diet (HFD) for 7-8 weeks. Body weight, liver weight, hepatic lipid contents, and plasma triacylglycerol (TG) levels were determined. Western blot analysis was performed to determine Sirtuin (SIRT) 1, tuberous sclerosis complex (TSC) 2, and mammalian target of rapamycin complex (mTORC) 1 activity in the liver. Effects of Crtc2 depletion on lipogenesis was determined by measuring lipogenic gene expression (western blot analysis and qRT-PCR) in the liver as well as Oil red O staining in hepatocytes. Effects of miR-34a on mTORC1 activity and hepatic lipid accumulation was assessed by AAV-miR-34a virus in mice and Ad-miR-34a virus and Ad-anti-miR-34a virus in hepatocytes. Autophagic flux was assessed by western blot analysis after leupeptin injection in mice and bafilomycin treatment in hepatocytes. Lipophagy was assessed by transmission electron microscopy and confocal microscopy. Expression of CRTC2 and p-S6K1 in livers of human NAFLD patients was assessed by immunohistochemistry. RESULTS: We found that expression of CRTC2 in the liver is highly induced upon HFD-feeding in mice. Hepatic depletion of Crtc2 ameliorated HFD-induced fatty liver disease phenotypes, with a pronounced inhibition of the mTORC1 pathway in the liver. Mechanistically, we found that expression of TSC2, a potent mTORC1 inhibitor, was enhanced in Crtc2 LKO mice due to the decreased expression of miR-34a and the subsequent increase in SIRT1-mediated deacetylation processes. We showed that ectopic expression of miR-34a led to the induction of mTORC1 pathway, leading to the hepatic lipid accumulation in part by limiting lipophagy and enhanced lipogenesis. Finally, we found a strong association of CRTC2, miR-34a and mTORC1 activity in the NAFLD patients in humans, demonstrating a conservation of signaling pathways among species. CONCLUSIONS: These data collectively suggest that diet-induced activation of CRTC2 instigates the progression of NAFLD by activating miR-34a-mediated lipid accumulation in the liver via the simultaneous induction of lipogenesis and inhibition of lipid catabolism. Therapeutic approach to specifically inhibit CRTC2 activity in the liver could be beneficial in combating NAFLD in the future.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factores de Transcripción/metabolismo , Animales , Autofagia/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Hepatocitos/metabolismo , Metabolismo de los Lípidos/fisiología , Lipogénesis/genética , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Obesidad/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Factores de Transcripción/genética
9.
Biomaterials ; 277: 121081, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34481291

RESUMEN

Unmethylated CpG motifs activate toll-like receptor 9 (TLR9), leading to sequence- and species-specific immune stimulation. Here, we engineered a CpG oligodeoxyribonucleotide (ODN) with multiple hydrophobic moieties, so-called lipid-modified uracil, which resulted in a facile micelle formation of the stimulant. The self-assembled CpG nanostructure (U4CpG) containing the ODN 2216 sequence was characterized by various spectroscopic and microscopic methods together with molecular dynamics simulations. Next, we evaluated the nano-immunostimulant for enhancement of anti-HIV immunity. U4CpG treatment induced activation of plasmacytoid dendritic cells (pDCs) and natural killer (NK) cells in healthy human peripheral blood, which produced type I interferons (IFNs) and IFN-γ in human peripheral blood mononuclear cells (PBMCs). Moreover, we validated the activation and promotion efficacy of U4CpG in patient-derived blood cells, and HIV-1 spread was significantly suppressed by a low dosage of the immunostimulant. Furthermore, U4CpG-treated PBMC cultured medium elicited transcription of latent HIV-1 in U1 cells indicating that U4CpG reversed HIV-1 latency. Thus, the functions of U4CpG in eradicating HIV-1 by enhancing immunity and reversing latency make the material a potential candidate for clinical studies dealing with viral infection.


Asunto(s)
Infecciones por VIH , VIH-1 , Membrana Celular , Células Cultivadas , Células Dendríticas , Infecciones por VIH/tratamiento farmacológico , Humanos , Leucocitos Mononucleares , Micelas , Oligodesoxirribonucleótidos , Receptor Toll-Like 9 , Latencia del Virus
10.
Structure ; 29(8): 810-822.e3, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34143977

RESUMEN

A steady supply of platelets maintains their levels in the blood, and this is achieved by the generation of progeny from platelet intermediates. Using systematic super-resolution microscopy, we examine the ultrastructural organization of various organelles in different platelet intermediates to understand the mechanism of organelle redistribution and sorting in platelet intermediate maturation as the early step of platelet progeny production. We observe the dynamic interconversion between the intermediates and find that microtubules are responsible for controlling the overall shape of platelet intermediates. Super-resolution images show that most of the organelles are located near the cell periphery in oval preplatelets and confined to the bulbous tips in proplatelets. We also find that the distribution of the dense tubular system and α granules is regulated by actin, whereas that of mitochondria and dense granules is governed by microtubules. Altogether, our results call for a reassessment of organelle redistribution in platelet intermediates.


Asunto(s)
Actinas/química , Plaquetas/ultraestructura , Microtúbulos/ultraestructura , Adulto , Movimiento Celular , Femenino , Humanos , Masculino , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Persona de Mediana Edad , Procesos Estocásticos , Adulto Joven
11.
Sci Rep ; 11(1): 10511, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006947

RESUMEN

Understanding the platelet activation molecular pathways by characterizing specific protein clusters within platelets is essential to identify the platelet activation state and improve the existing therapies for hemostatic disorders. Here, we employed various state-of-the-art super-resolution imaging and quantification methods to characterize the platelet spatiotemporal ultrastructural change during the activation process due to phorbol 12-myristate 13-acetate (PMA) stimuli by observing the cytoskeletal elements and various organelles at nanoscale, which cannot be done using conventional microscopy. Platelets could be spread out with the guidance of actin and microtubules, and most organelles were centralized probably due to the limited space of the peripheral thin regions or the close association with the open canalicular system (OCS). Among the centralized organelles, we provided evidence that granules are fused with the OCS to release their cargo through enlarged OCS. These findings highlight the concerted ultrastructural reorganization and relative arrangements of various organelles upon activation and call for a reassessment of previously unresolved complex and multi-factorial activation processes.


Asunto(s)
Activación Plaquetaria/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Citoesqueleto de Actina/efectos de los fármacos , Humanos , Orgánulos/metabolismo
12.
Cancer Med ; 10(4): 1405-1417, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33486901

RESUMEN

BACKGROUND: Despite the progress of advanced target therapeutic agents and immune checkpoint inhibitors, EGFR-TKI resistance is still one of the biggest obstacles in treating lung cancer. Clinical studies with autophagy inhibitors are actively underway to overcome drug resistance. METHODS: We used PC9, PC9/GR, and HCC827/GR cell lines to evaluate the activation of autophagy and EGFR-TKI resistance. Chloroquine was applied as an autophagic blocker and verteporfin was utilized as a YAP inhibitor. RESULTS: In this study, we tried to reveal the effect of autophagy adaptor p62 which is accumulated by autophagy inhibitor in EGFR-TKI-resistant lung adenocarcinoma. We identified that p62 has oncogenic functions that induce cell proliferation and invasion of EGFR-TKI-resistant lung adenocarcinoma. Interestingly, we found for the first time that YAP regulates p62 transcription through ERK, and YAP inhibition can suppress the expression of oncogenic p62. We also confirmed that the expressions of p62 and YAP have a positive correlation in EGFR-mutant lung adenocarcinoma patients. To block cell survival via perturbing YAP-p62 axis, we treated EGFR-TKI-resistant lung cancer cells with YAP inhibitor verteporfin. Remarkably, verteporfin effectively caused the death of EGFR-TKI-resistant lung cancer cells by decreasing the expressions of p62 with oncogenic function, YAP, and its target PD-L1. So, the cumulative effect of oncogenic p62 should be considered when using autophagy inhibitors, especially drugs that act at the last stage of autophagy such as chloroquine and bafilomycin A1. CONCLUSION: Finally, we suggest that targeting YAP-p62 signaling axis can be useful to suppress the EGFR-TKI-resistant lung cancer. Therefore, drug repurposing of verteporfin for lung cancer treatment may be valuable to consider because it can inhibit critical targets: p62, YAP, and PD-L1 at the same time.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pronóstico , Transducción de Señal , Tasa de Supervivencia , Células Tumorales Cultivadas
13.
Mater Sci Eng C Mater Biol Appl ; 109: 110500, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32228981

RESUMEN

In this study, we aimed to demonstrate the feasibility of the application of biocompatible liquid type fluorescent carbon nanodots (C-paints) to microalgae by improving microalgae productivity. C-paints were prepared by a simple process of ultrasound irradiation using polyethylene glycol (PEG) as a passivation agent. The resulting C-paints exhibited a carbonyl-rich surface with good uniformity of particle size, excellent water solubility, photo-stability, fluorescence efficiency, and good biocompatibility (<10.0 mg mL-1 of C-paints concentration). In the practical application of C-paints to microalgae culture, the most effective and optimized condition leading to growth promoting effect was observed at a C-paints concentration of 1.0 mg mL-1 (>20% higher than the control cell content). A C-paints concentration of 1-10.0 mg mL-1 induced an approximately >1.8 times higher astaxanthin content than the control cells. The high light delivery effect of non-cytotoxic C-paints was applied as a stress condition for H. pluvialis growth and was found to play a major role in enhancing productivity. Notably, the results from this study are an essential approach to improve astaxanthin production, which can be used in various applications because of its therapeutic effects such as cancer prevention, anti-inflammation, immune stimulation, and treatment of muscle-soreness.


Asunto(s)
Antioxidantes/química , Carbono/química , Animales , Humanos , Microalgas/efectos de los fármacos , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Xantófilas/química , Xantófilas/farmacología
14.
ACS Nano ; 13(8): 8766-8783, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31310506

RESUMEN

Complex amyloid aggregation of amyloid-ß (1-40) (Aß1-40) in terms of monomer structures has not been fully understood. Herein, we report the microscopic mechanism and pathways of Aß1-40 aggregation with macroscopic viewpoints through tuning its initial structure and solubility. Partial helical structures of Aß1-40 induced by low solvent polarity accelerated cytotoxic Aß1-40 amyloid fibrillation, while predominantly helical folds did not aggregate. Changes in the solvent polarity caused a rapid formation of ß-structure-rich protofibrils or oligomers via aggregation-prone helical structures. Modulation of the pH and salt concentration transformed oligomers to protofibrils, which proceeded to amyloid formation. We reveal diverse molecular mechanisms underlying Aß1-40 aggregation with conceptual energy diagrams and propose that aggregation-prone partial helical structures are key to inducing amyloidogenesis. We demonstrate that context-dependent protein aggregation is comprehensively understood using the macroscopic phase diagram, which provides general insights into differentiation of amyloid formation and phase separation from unfolded and folded structures.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/ultraestructura , Fragmentos de Péptidos/ultraestructura , Agregación Patológica de Proteínas/genética , Conformación Proteica en Hélice alfa/genética , Enfermedad de Alzheimer/patología , Amiloide/química , Amiloide/genética , Péptidos beta-Amiloides/química , Humanos , Fragmentos de Péptidos/química , Conformación Proteica en Lámina beta/genética , Pliegue de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Solubilidad
15.
Aquat Toxicol ; 194: 46-56, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29149643

RESUMEN

Autophagy is a 'self-eating' system that regulates the degradation of cellular components and is involved in various biological processes including survival and development. However, despite its crucial role in organisms, the regulatory mechanism of autophagy remains largely unclear, particularly in invertebrates. In this study, conserved autophagy in the rotifer Brachionus koreanus in response to cadmium (Cd) exposure was verified by measuring acidic vesicle organelles using acridine orange (AO) and neutral red (NR) staining, and by detecting LC3 I/II on Western blot and immunofluorescence. We also demonstrated activation of p38 mitogen-activated protein kinase (MAPK) in response to Cd-induced oxidative stress, leading to the induction of autophagy in B. koreanus. This was further verified by analysis of MAPK protein levels and immunofluorescence of LC3 I/II after treatment with reactive oxygen species (ROS) scavengers and inhibitors specific to MAPKs. We propose a p38 MAPK-mediated regulatory mechanism of autophagy in B. koreanus in response to Cd-induced oxidative stress. This study will contribute to a better understanding of autophagic processes in invertebrates and its modulation by environmental stressors.


Asunto(s)
Autofagia/efectos de los fármacos , Cadmio/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Rotíferos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Secuencia de Aminoácidos , Animales , Cadmio/metabolismo , Proteínas del Helminto/metabolismo , Humanos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Rotíferos/efectos de los fármacos , Rotíferos/crecimiento & desarrollo , Alineación de Secuencia
16.
Int J Syst Evol Microbiol ; 67(11): 4298-4303, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28126041

RESUMEN

Strain Hb3T was isolated from a tidal flat in Jeollabuk-do Gunsan, Republic of Korea. Cells were Gram-stain-negative, oxidase- and catalase-positive, rod-shaped and motile. The strain grew optimally at 25-35 °C, at pH 6.0-6.5 and with 3.0-10.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Hb3T belonged to the genus Halomonas. Strain Hb3T was related most closely to Halomonas ventosae Al12T (98.6 % 16S rRNA gene sequence similarity), Halomonas denitrificans M29T (98.6 %) and Halomonas saccharevitans AJ275T (98.4 %). Moreover, multilocus sequence analysis using the gyrB, rpoD and secA genes supported the phylogenetic position of strain Hb3T. The genomic G+C content of strain Hb3T was 67.9 mol%. DNA-DNA hybridization values for strain Hb3T versus H. ventosae Al12T, H. denitrificans M29T and H. saccharevitans AJ275T were 38.0, 54.5 and 47.4 %, respectively. The major quinone was ubiquinone Q-9 and the major fatty acids were C18 : 1ω7c, summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and C19 : 0 cyclo ω8c. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, amino lipid, six unidentified phospholipids and an unidentified lipid comprised the polar lipid profile. On the basis of the data presented in this report, strain Hb3T represents a novel species of the genus Halomonas. The name Halomonas aestuarii sp. nov. is proposed for this novel species. The type strain is Hb3T (=KCTC 52253T=JCM 31415T).


Asunto(s)
Sedimentos Geológicos/microbiología , Halomonas/clasificación , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Halomonas/genética , Halomonas/aislamiento & purificación , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Ubiquinona/química
17.
Protist ; 166(5): 569-84, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26491972

RESUMEN

The syndinean dinoflagellates are a diverse assemblage of alveolate endoparasites that branch basal to the core dinoflagellates. Because of their phylogenetic position, the syndineans are considered key model microorganisms in understanding early evolution in the dinoflagellates. Closed mitosis with an extranuclear spindle that traverses the nucleus in cytoplasmic grooves or tunnels is viewed as one of the morphological features shared by syndinean and core dinoflagellates. Here we describe nuclear morphology and mitosis in the syndinean dinoflagellate Amoebophrya sp. from Akashiwo sanguinea, a member of the A. ceratii complex, as revealed by protargol silver impregnation, DNA specific fluorochromes, and transmission electron microscopy. Our observations show that not all species classified as dinoflagellates have an extranuclear spindle. In Amoebophrya sp. from A. sanguinea, an extranuclear microtubule cylinder located in a depression in the nuclear surface during interphase moves into the nucleoplasm via sequential membrane fusion events and develops into an entirely intranuclear spindle. Results suggest that the intranuclear spindle of Amoebophrya spp. may have evolved from an ancestral extranuclear spindle and indicate the need for taxonomic revision of the Amoebophryidae.


Asunto(s)
Dinoflagelados/fisiología , Mitosis , Núcleo Celular/fisiología , Núcleo Celular/ultraestructura , Dinoflagelados/ultraestructura , Colorantes Fluorescentes/química , Microscopía Electrónica de Transmisión , Filogenia , Tinción con Nitrato de Plata , Huso Acromático/ultraestructura
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 2): 016102, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22400620

RESUMEN

Human dynamics is known to be inhomogeneous and bursty but the detailed understanding of the role of human factors in bursty dynamics is still lacking. In order to investigate their role we devise an agent-based model, where an agent in an uncertain situation tries to reduce the uncertainty by communicating with information providers while having to wait time for responses. Here the waiting time can be considered as cost. We show that the optimal choice of the waiting time under uncertainty gives rise to the bursty dynamics, characterized by the heavy tailed distribution of optimal waiting time. We find that in all cases the efficiency for communication is relevant to the scaling behavior of the optimal waiting time distribution. On the other hand, the cost turns out in some cases to be irrelevant depending on the degree of uncertainty and efficiency.


Asunto(s)
Comunicación , Modelos Teóricos , Incertidumbre , Humanos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA