Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Conserv Physiol ; 12(1): coae011, 2024.
Article En | MEDLINE | ID: mdl-38584988

The amount of time that juvenile salmon remain in an estuary varies among and within populations, with some individuals passing through their estuary in hours while others remain in the estuary for several months. Underlying differences in individual physiological condition, such as body size, stored energy and osmoregulatory function, could drive individual variation in the selection of estuary habitat. Here we investigated the role of variation in physiological condition on the selection of estuarine and ocean habitat by sockeye salmon (Oncorhynchus nerka) smolts intercepted at the initiation of their 650-km downstream migration from Chilko Lake, Fraser River, British Columbia (BC). Behavioural salinity preference experiments were conducted on unfed smolts held in fresh water at three time intervals during their downstream migration period, representing the stage of migration at lake-exit, and the expected timing for estuary-entry and ocean-entry (0, 1 and 3 weeks after lake-exit, respectively). In general, salinity preference behaviour varied across the three time periods consistent with expected transition from river to estuary to ocean. Further, individual physiological condition did influence habitat choice. Smolt condition factor (K) and energy density were positively correlated with salinity preference behaviour in the estuary and ocean outmigration stages, but not at lake-exit. Our results suggest that smolt physiological condition upon reaching the estuary could influence migratory behaviour and habitat selection. This provides evidence on the temporally dependent interplay of physiology, behaviour and migration in wild juvenile Pacific salmon, with juvenile rearing conditions influencing smolt energetic status, which in turn influences habitat choice during downstream migration. The implication for the conservation of migratory species is that the relative importance of stopover habitats may vary as a function of initial condition.

2.
Glob Chang Biol ; 30(1): e17095, 2024 Jan.
Article En | MEDLINE | ID: mdl-38273478

The impacts of climate change are widespread and threaten natural systems globally. Yet, within regions, heterogeneous physical landscapes can differentially filter climate, leading to local response diversity. For example, it is possible that while freshwater lakes are sensitive to climate change, they may exhibit a diversity of thermal responses owing to their unique morphology, which in turn can differentially affect the growth and survival of vulnerable biota such as fishes. In particular, salmonids are cold-water fishes with complex life histories shaped by diverse freshwater habitats that are sensitive to warming temperatures. Here we examine the influence of habitat on the growth of sockeye salmon (Oncorhynchus nerka) in nursery lakes of Canada's Skeena River watershed over a century of change in regional temperature and intraspecific competition. We found that freshwater growth has generally increased over the last century. While growth tended to be higher in years with relatively higher summer air temperatures (a proxy for lake temperature), long-term increases in growth appear largely influenced by reduced competition. However, habitat played an important role in modulating the effect of high temperature. Specifically, growth was positively associated with rising temperatures in relatively deep (>50 m) nursery lakes, whereas warmer temperatures were not associated with a change in growth for fish among shallow lakes. The influence of temperature on growth also was modulated by glacier extent whereby the growth of fish from lakes situated in watersheds with little (i.e., <5%) glacier cover increased with rising temperatures, but decreased with rising temperatures for fish in lakes within more glaciated watersheds. Maintaining the integrity of an array of freshwater habitats-and the processes that generate and maintain them-will help foster a diverse climate-response portfolio for important fish species, which in turn can ensure that salmon watersheds are resilient to future environmental change.


Fishes , Salmon , Animals , Salmon/physiology , Rivers , Lakes , Ecosystem , Climate Change
3.
Sci Total Environ ; 912: 169245, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38072264

Glacier retreat is rapidly transforming some watersheds, with ramifications for water supply, ecological succession, important species such as Pacific salmon (Oncorhynchus spp.), and cultural uses of landscapes. To advance a more holistic understanding of the evolution of proglacial landscapes, we integrate multiple lines of knowledge starting in the early 1900s with contemporary data from the Taaltsux̱éi (Tulsequah) Watershed in British Columbia, Canada. Our objectives were to: 1) synthesize recent historical geography and Indigenous Knowledge, including glacier dynamics, and hydrology; 2) describe the limnology of a proglacial lake; 3) quantify decadal-scale downstream physical floodplain change; and 4) characterize riverine physical, chemical, and biological differences relative to distance from the proglacial lake. Since 1982, the Tulsequah Glacier has receded 0.07 km/yr, exposing a cold, deep, and growing proglacial lake. The downstream floodplain is rapidly changing; satellite imagery analysis revealed a 14 % increase in vegetation from 2003 to 2017 and Indigenous Knowledge described increases in vegetation and wildlife habitat over the last century. Contemporary measurements of physical-chemical water properties differed across sites representing the upper and lower watershed, and mainstem and off-channel habitats. Catches of juvenile salmonids in the upper watershed (closer to the glacier) were mostly limited to warmer, clearer groundwater-fed channels, whereas in the lower watershed there were salmonids in both groundwater-fed and mainstem habitats. There was limited zooplankton taxa diversity from the proglacial lake and benthic macroinvertebrates in the river. Collectively, our synthesis suggests that the transformation of proglacial landscapes experiencing rapid ice loss can be influenced by interlinked abiotic processes of glacier retreat, lake formation, and altered hydrology, as well as corresponding biological processes such as beaver repopulation, wetland formation, and riparian vegetation growth. These factors, along with expected increases to proglacial lake productivity and salmon habitat suitability, are an important consideration for forward-looking watershed management of glacier-fed rivers.


Ecosystem , Oncorhynchus , Animals , Salmon , Wetlands , British Columbia
4.
Science ; 382(6673): 887-889, 2023 11 24.
Article En | MEDLINE | ID: mdl-37995230

Future ecological value of emerging habitats must be considered as climate change transforms the planet.


Animal Migration , Climate Change , Ice Cover , Mining , Salmon , Animals , Ecosystem , Canada , Environmental Policy
5.
Ecol Appl ; 33(6): e2898, 2023 09.
Article En | MEDLINE | ID: mdl-37303288

Metapopulations are often managed as a single contiguous population despite the spatial structure underlying their local and regional dynamics. Disturbances from human activities can also be spatially structured with mortality impacts concentrated to just a few local populations among the aggregate. Scale transitions between local and regional processes can generate emergent properties whereby the whole system can fail to recover as quickly as expected for an equivalent single population. Here, we draw on theory and empirical case studies to ask: what is the consequence of spatially structured ecological and disturbance processes on metapopulation recoveries? We suggest that exploring this question could help address knowledge gaps for managing metapopulations including: Why do some metapopulations recover quickly while others remain collapsed? And, what risks are unaccounted for when metapopulations are managed at aggregate scales? First, we used model simulations to examine how scale transitions among ecological and disturbance conditions interact to generate emergent metapopulation recovery outcomes. In general, we found that the spatial structure of disturbance was a strong determinant of recovery outcomes. Specifically, disturbances that unevenly impacted local populations consistently generated the slowest recoveries and highest conservation risks. Ecological conditions that dampened metapopulation recoveries included low dispersal, variable local demography, sparsely connected habitat networks, and spatially and temporally correlated stochastic processes. Second, we illustrate the unexpected challenges of managing metapopulations by examining the recoveries of three USA federally listed endangered species: Florida Everglade snail kites, California and Alaska sea otters, and Snake River Chinook salmon. Overall, our results show the pivotal role of spatial structure in metapopulation recoveries whereby the interplay between local and regional processes shapes the resilience of the whole system. With this understanding, we provide guidelines for resource managers tasked with conserving and managing metapopulations and identify opportunities for research to support the application of metapopulation theory to real-world challenges.


Ecosystem , Salmon , Humans , Animals , Population Dynamics , Population Density , Endangered Species , Models, Biological
6.
Nat Ecol Evol ; 7(6): 852-861, 2023 Jun.
Article En | MEDLINE | ID: mdl-37127767

Global climate change is shifting the timing of life-cycle events, sometimes resulting in phenological mismatches between predators and prey. Phenological shifts and subsequent mismatches may be consistent across populations, or they could vary unpredictably across populations within the same species. For anadromous Pacific salmon (Oncorhynchus spp.), juveniles from thousands of locally adapted populations migrate from diverse freshwater habitats to the Pacific Ocean every year. Both the timing of freshwater migration and ocean arrival, relative to nearshore prey (phenological match/mismatch), can control marine survival and population dynamics. Here we examined phenological change of 66 populations across six anadromous Pacific salmon species throughout their range in western North America with the longest time series spanning 1951-2019. We show that different salmon species have different rates of phenological change but that there was substantial within-species variation that was not correlated with changing environmental conditions or geographic patterns. Moreover, outmigration phenologies have not tracked shifts in the timing of marine primary productivity, potentially increasing the frequency of future phenological mismatches. Understanding population responses to mismatches with prey are an important part of characterizing overall population-specific climate vulnerability.


Oncorhynchus , Animals , Salmon/physiology , Ecosystem , Population Dynamics , North America
7.
Sci Adv ; 8(26): eabn0929, 2022 Jul.
Article En | MEDLINE | ID: mdl-35776798

Mining provides resources for people but can pose risks to ecosystems that support cultural keystone species. Our synthesis reviews relevant aspects of mining operations, describes the ecology of salmonid-bearing watersheds in northwestern North America, and compiles the impacts of metal and coal extraction on salmonids and their habitat. We conservatively estimate that this region encompasses nearly 4000 past producing mines, with present-day operations ranging from small placer sites to massive open-pit projects that annually mine more than 118 million metric tons of earth. Despite impact assessments that are intended to evaluate risk and inform mitigation, mines continue to harm salmonid-bearing watersheds via pathways such as toxic contaminants, stream channel burial, and flow regime alteration. To better maintain watershed processes that benefit salmonids, we highlight key windows during the mining governance life cycle for science to guide policy by more accurately accounting for stressor complexity, cumulative effects, and future environmental change.

8.
Science ; 376(6600): 1421-1426, 2022 06 24.
Article En | MEDLINE | ID: mdl-35737793

Changing the course of Earth's climate is increasingly urgent, but there is also a concurrent need for proactive stewardship of the adaptive capacity of the rapidly changing biosphere. Adaptation ultimately underpins the resilience of Earth's complex systems; species, communities, and ecosystems shift and evolve over time. Yet oncoming changes will seriously challenge current natural resource management and conservation efforts. We review forward-looking conservation approaches to enable adaptation and resilience. Key opportunities include expanding beyond preservationist approaches by including those that enable and facilitate ecological change. Conservation should not just focus on climate change losers but also on proactive management of emerging opportunities. Local efforts to conserve biodiversity and generate habitat complexity will also help to maintain a diversity of future options for an unpredictable future.


Adaptation, Biological , Climate Change , Conservation of Natural Resources , Ecosystem , Biodiversity , Natural Resources
9.
Glob Chang Biol ; 28(1): 72-85, 2022 01.
Article En | MEDLINE | ID: mdl-34669231

Marine and freshwater ecosystems are increasingly at risk of large and cascading changes from multiple human activities (termed "regime shifts"), which can impact population productivity, resilience, and ecosystem structure. Pacific salmon exhibit persistent and large fluctuations in their population dynamics driven by combinations of intrinsic (e.g., density dependence) and extrinsic factors (e.g., ecosystem changes, species interactions). In recent years, many Pacific salmon have declined due to regime shifts but clear understanding of the processes driving these changes remains elusive. Here, we unpacked the role of density dependence, ecosystem trends, and stochasticity on productivity regimes for a community of five anadromous Pacific salmonids (Steelhead, Coho Salmon, Pink Salmon, Dolly Varden, and Coastal Cutthroat Trout) across a rich 40-year time-series. We used a Bayesian multivariate state-space model to examine whether productivity shifts had similarly occurred across the community and explored marine or freshwater changes associated with those shifts. Overall, we identified three productivity regimes: an early regime (1976-1990), a compensatory regime (1991-2009), and a declining regime (since 2010) where large declines were observed for Steelhead, Dolly Varden, and Cutthroat Trout, intermediate declines in Coho and no change in Pink Salmon. These regime changes were associated with multiple cumulative effects across the salmon life cycle. For example, increased seal densities and ocean competition were associated with lower adult marine survival in Steelhead. Watershed logging also intensified over the past 40 years and was associated with (all else equal) ≥97% declines in freshwater productivity for Steelhead, Cutthroat, and Coho. For Steelhead, marine and freshwater dynamics played approximately equal roles in explaining trends in total productivity. Collectively, these changing environments limited juvenile production and lowered future adult returns. These results reveal how changes in freshwater and marine environments can jointly shape population dynamics among ecological communities, like Pacific salmon, with cascading consequences to their resilience.


Ecosystem , Oncorhynchus mykiss , Animals , Bayes Theorem , Fresh Water , Humans , Salmon
10.
Nat Commun ; 12(1): 6816, 2021 12 07.
Article En | MEDLINE | ID: mdl-34876560

Glacier retreat poses risks and benefits for species of cultural and economic importance. One example is Pacific salmon (Oncorhynchus spp.), supporting subsistence harvests, and commercial and recreational fisheries worth billions of dollars annually. Although decreases in summer streamflow and warming freshwater is reducing salmon habitat quality in parts of their range, glacier retreat is creating new streams and lakes that salmon can colonize. However, potential gains in future salmon habitat associated with glacier loss have yet to be quantified across the range of Pacific salmon. Here we project future gains in Pacific salmon freshwater habitat by linking a model of glacier mass change for 315 glaciers, forced by five different Global Climate Models, with a simple model of salmon stream habitat potential throughout the Pacific Mountain ranges of western North America. We project that by the year 2100 glacier retreat will create 6,146 (±1,619) km of new streams accessible for colonization by Pacific salmon, of which 1,930 (±569) km have the potential to be used for spawning and juvenile rearing, representing 0 to 27% gains within the 18 sub-regions we studied. These findings can inform proactive management and conservation of Pacific salmon in this era of rapid climate change.

11.
Conserv Physiol ; 9(1): coab014, 2021.
Article En | MEDLINE | ID: mdl-33815801

Long-distance migrations can be energetically demanding and can represent phases of high mortality. Understanding relationships between body condition and migratory performance can help illuminate the challenges and vulnerabilities of migratory species. Juvenile anadromous sockeye salmon (Oncorhynchus nerka) may migrate over 1000 km from their freshwater nursery habitats to estuary and ocean feeding grounds. During the period corresponding to the seaward migration of sockeye salmon, we held smolts in the laboratory to ask the following: (i) Does non-feeding migration duration influence prolonged swim performance and survival? (ii) What are the relationships between individual body condition and swim performance and survival? Wild sockeye salmon were intercepted during their migration and held without food for up to 61 days to represent the non-feeding freshwater migration and the extremes of poor estuary habitat. We conducted 40 sets of prolonged swim trials on 319 fish from 3 treatment groups that represented entrance to the marine environment on (i) an average,(ii) a delayed and (iii) a severely delayed migration schedule. Experimentally controlled freshwater migration duration did not impact swim performance or survival. Swim performance decreased concomitant with condition factor, where smolts with a Fulton's condition factor of <0.69 were less likely (<50% probability) to complete the swim test (90 min swim test, at ~0.50 m/s). Survival of salmon smolts in the laboratory was less likely at energy densities of less than 3.47 MJ/kg. Swim performance decreased much sooner than survival, suggesting that swim performance, and therefore condition factor, may be a good indicator of survival of migratory smolts, as fish with reduced swim performance will likely be predated. These two relationships, one more ecologically relevant and one more clinical, help reveal the limits of long-distance migration for juvenile salmon and can be used to determine population-specific starvation risk associated with various freshwater and marine habitat conditions.

13.
Bioscience ; 71(2): 186-204, 2021 Feb.
Article En | MEDLINE | ID: mdl-33613129

Pacific salmon (Oncorhynchus spp.) are at the center of social-ecological systems that have supported Indigenous peoples around the North Pacific Rim since time immemorial. Through generations of interdependence with salmon, Indigenous Peoples developed sophisticated systems of management involving cultural and spiritual beliefs, and stewardship practices. Colonization radically altered these social-ecological systems, disrupting Indigenous management, consolidating authority within colonial governments, and moving most harvest into mixed-stock fisheries. We review Indigenous management of salmon, including selective fishing technologies, harvest practices, and governance grounded in multigenerational place-based knowledge. These systems and practices showcase pathways for sustained productivity and resilience in contemporary salmon fisheries. Contrasting Indigenous systems with contemporary management, we document vulnerabilities of colonial governance and harvest management that have contributed to declining salmon fisheries in many locations. We suggest that revitalizing traditional systems of salmon management can improve prospects for sustainable fisheries and healthy fishing communities and identify opportunities for their resurgence.

14.
Environ Monit Assess ; 192(9): 568, 2020 Aug 07.
Article En | MEDLINE | ID: mdl-32767118

Anthropogenic atmospheric emission and subsequent deposition of sulfur (S) has been linked to disrupted watershed biogeochemical processes through soil and surface water acidification. We investigated watershed-scale impacts of acidic deposition on tributary concentrations and watershed exports of major nutrients and ions for the Kitimat River Watershed, British Columbia. Since the 1950s, the Kitimat watershed had an aluminum smelting facility with substantial emissions at the river estuary. Emissions load the airshed overlying the watershed and potentially impact western tributaries leaving eastern tributaries available as reference. We assessed concentrations and export of key compounds in three reference and six potentially impacted tributaries and watersheds in 2015 and 2016. Sulfate (SO4), fluoride (F), nitrate (NO3), and chloride (Cl) were significantly higher in impacted tributaries. F concentrations exceeded the Canadian Council of Ministers of the Environment guideline for aquatic life in 83% of samples collected from impacted streams. Watershed export and associated uncertainty were determined by bootstrapped flow-stratified Beale's unbiased estimator. Impact of emissions on watershed export was modeled in a Bayesian approach to include variance in the export estimate to inform the uncertainty of model parameters. Export of SO4 and Ca increased significantly within 16 km and 8 km, respectively, toward the smelter emissions. The corresponding impacted area for SO4 and Ca was approximately 100 km2 and 45 km2, respectively. SO4 export is likely due to direct impacts of S deposition, with excess S being flushed from the watersheds. Ca export patterns likely result from indirect impacts of S deposition on soil chemistry and flushing of Ca. These impacts may contribute to effects within tributaries on benthic stream communities and regionally important juvenile Pacific salmon.


Environmental Monitoring , Rivers , Bayes Theorem , Canada , Nitrates/analysis
16.
Bioscience ; 70(3): 220-236, 2020 Mar 01.
Article En | MEDLINE | ID: mdl-32174645

Glaciers have shaped past and present habitats for Pacific salmon (Oncorhynchus spp.) in North America. During the last glacial maximum, approximately 45% of the current North American range of Pacific salmon was covered in ice. Currently, most salmon habitat occurs in watersheds in which glacier ice is present and retreating. This synthesis examines the multiple ways that glacier retreat can influence aquatic ecosystems through the lens of Pacific salmon life cycles. We predict that the coming decades will result in areas in which salmon populations will be challenged by diminished water flows and elevated water temperatures, areas in which salmon productivity will be enhanced as downstream habitat suitability increases, and areas in which new river and lake habitat will be formed that can be colonized by anadromous salmon. Effective conservation and management of salmon habitat and populations should consider the impacts of glacier retreat and other sources of ecosystem change.

17.
Glob Chang Biol ; 26(4): 1986-2001, 2020 Apr.
Article En | MEDLINE | ID: mdl-32020738

Estuaries are productive ecosystems providing important habitat for a diversity of species, yet they also experience intense levels of anthropogenic development. To inform decision-making, it is essential to understand the pathways of impacts of particular human activities, especially those that affect species such as salmon, which have high ecological, social-cultural and economic values. Salmon systems provide an opportunity to build from the substantial body of research on responses to estuary developments and take stock of what is known. We conducted a systematic English-language literature review on the responses of juvenile salmon to anthropogenic activities in estuaries and nearshore areas asking: what has been studied, where are the major knowledge gaps and how do stressors affect salmon? We found a substantial body of research (n = 167 studies; 1,369 comparative tests) to help understand responses of juvenile salmon to 24 activities and their 14 stressors. Across studies, 82% of the research was conducted in the eastern Pacific (Oregon and Washington, USA and British Columbia, Canada) showing a limited geographical scope. Using a semiquantitative approach to summarize the literature, including a weight-of-evidence metric, we found a range of results from low to moderate-high confidence in the consequences of the stressors. For example, we found moderate-high confidence in the negative impacts of pollutants and sea lice and moderate confidence in negative impacts from connectivity loss and changes in flow. Our results suggest that overall, multiple anthropogenic activities cause negative impacts across ecological scales. However, our results also reveal knowledge gaps resulting from minimal research on particular species (e.g. sockeye salmon), regions (e.g. Atlantic) or stressors (e.g. entrainment) that would be expedient areas for future research. With estuaries acting as a nexus of biological and societal importance and hotspots of ongoing development, the insights gained here can contribute to informed decision-making.

19.
Article En | MEDLINE | ID: mdl-29581402

The spatial dispersal of individuals plays an important role in the dynamics of populations, and is central to metapopulation theory. Dispersal provides connections within metapopulations, promoting demographic and evolutionary rescue, but may also introduce maladapted individuals, potentially lowering the fitness of recipient populations through introgression of heritable traits. To explore this dual nature of dispersal, we modify a well-established eco-evolutionary model of two locally adapted populations and their associated mean trait values, to examine recruiting salmon populations that are connected by density-dependent dispersal, consistent with collective migratory behaviour that promotes navigation. When the strength of collective behaviour is weak such that straying is effectively constant, we show that a low level of straying is associated with the highest gains in metapopulation robustness and that high straying serves to erode robustness. Moreover, we find that as the strength of collective behaviour increases, metapopulation robustness is enhanced, but this relationship depends on the rate at which individuals stray. Specifically, strong collective behaviour increases the presence of hidden low-density basins of attraction, which may serve to trap disturbed populations, and this is exacerbated by increased habitat heterogeneity. Taken as a whole, our findings suggest that density-dependent straying and collective migratory behaviour may help metapopulations, such as in salmon, thrive in dynamic landscapes. Given the pervasive eco-evolutionary impacts of dispersal on metapopulations, these findings have important ramifications for the conservation of salmon metapopulations facing both natural and anthropogenic contemporary disturbances.This article is part of the theme issue 'Collective movement ecology'.


Animal Distribution , Salmon/physiology , Social Behavior , Animal Migration , Animals , Biological Evolution , Population Density , Population Dynamics
...