Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Phys Med Biol ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38776948

OBJECTIVE: Single-photon emission computed tomography (SPECT) with pinhole collimators can provide high-resolution imaging, but is often limited by low sensitivity. Acquiring projections simultaneously through multiple pinholes affords both high resolution and high sensitivity. However, the overlap of projections from different pinholes on detectors, known as multiplexing, has been shown to cause artefacts which degrade reconstructed images. Approach: Multiplexed projection sets were considered here using an analytic simulation model of AdaptiSPECT-C - a brain-dedicated multi-pinhole SPECT system. AdaptiSPECT-C has fully adaptable aperture shutters, so can acquire projections with a combination of multiplexed and non-multiplexed frames using temporal shuttering. Two strategies for reducing multiplex artefacts were considered: an algorithm to de-multiplex projections, and an alternating reconstruction strategy for projections acquired with a combination of multiplexed and non-multiplexed frames. Geometric and anthropomorphic digital phantoms were used to assess a number of metrics. Main results: Both de-multiplexing strategies showed a significant reduction in image artefacts and improved fidelity, image uniformity, contrast recovery and activity recovery. In all cases, the two de-multiplexing strategies resulted in superior metrics to those from images acquired with only mux-free frames. The de-multiplexing algorithm provided reduced image noise and superior uniformity, whereas the alternating strategy improved contrast and activity recovery. Significance: The use of these de-multiplexing algorithms means that multi-pinhole SPECT systems can acquire projections with more multiplexing without degradation of images. .

2.
Phys Med Biol ; 67(2)2022 01 19.
Article En | MEDLINE | ID: mdl-34891142

Breathing motion can displace internal organs by up to several cm; as such, it is a primary factor limiting image quality in medical imaging. Motion can also complicate matters when trying to fuse images from different modalities, acquired at different locations and/or on different days. Currently available devices for monitoring breathing motion often do so indirectly, by detecting changes in the outline of the torso rather than the internal motion itself, and these devices are often fixed to floors, ceilings or walls, and thus cannot accompany patients from one location to another. We have developed small ultrasound-based sensors, referred to as 'organ configuration motion' (OCM) sensors, that attach to the skin and provide rich motion-sensitive information. In the present work we tested the ability of OCM sensors to enable respiratory gating duringin vivoPET imaging. A motion phantom involving an FDG solution was assembled, and two cancer patients scheduled for a clinical PET/CT exam were recruited for this study. OCM signals were used to help reconstruct phantom andin vivodata into time series of motion-resolved images. As expected, the motion-resolved images captured the underlying motion. In Patient #1, a single large lesion proved to be mostly stationary through the breathing cycle. However, in Patient #2, several small lesions were mobile during breathing, and our proposed new approach captured their breathing-related displacements. In summary, a relatively inexpensive hardware solution was developed here for respiration monitoring. Because the proposed sensors attach to the skin, as opposed to walls or ceilings, they can accompany patients from one procedure to the next, potentially allowing data gathered in different places and at different times to be combined and compared in ways that account for breathing motion.


Multimodal Imaging , Positron Emission Tomography Computed Tomography , Humans , Motion , Phantoms, Imaging , Positron-Emission Tomography/methods
3.
Phys Med Biol ; 65(17): 175001, 2020 08 21.
Article En | MEDLINE | ID: mdl-32369789

Ischemic heart disease remains a significant public health concern, accentuating the importance of basic research and therapeutic studies of small animals in which myocardial changes can be reproducibly detected and quantified. Few or no studies have investigated the performance of microSPECT in quantifying myocardial lesions. We utilized three versions of a multi-compartment phantom containing two left ventricular myocardial compartments (one uniform and one with a transmural 'cold' defect), a ventricular blood pool, and a background compartment, where each version had a different myocardial wall thickness (0.75, 1.0 and 1.25 mm). Each compartment was imaged separately while acquiring list-mode data. The separate compartment data were manipulated into a single data set with a known defect contrast, blood-pool and background activity. Data were processed with background-free defect-contrast values of 0 (no defect), -0.25, -0.5, -0.75, and -1.0 (all defect), three ratios of blood-pool to myocardial activity, 0 (no blood pool activity), 0.1, and 0.2 (20% of the activity in the healthy myocardial compartment), and three ratios of uniform background 0 (no background activity), 0.1 and 0.2, relative to the healthy myocardial compartment. For each wall thickness, defect contrast, blood-pool, and background activity combination, 25 list-mode noise realizations were generated and reconstructed. Volumes of interest were drawn and used to determine mean contrast recovery coefficients (CRCs) over the noise ensembles. We developed a slope-analysis procedure to estimate a single CRC over all contrast levels, with resulting CRC values (for no blood-pool and no background) of 0.848, 0.946, and 0.834 for the 0.75, 1.0, and 1.25 mm wall thicknesses, respectively. We also determined and validated a reprocessing method to calculate an ideal CRC. This work demonstrates the quantitative abilities of microSPECT for myocardial-defect imaging utilizing CRC and establishes a framework for evaluating defect-imaging capabilities in other systems.


Heart/diagnostic imaging , Phantoms, Imaging , Tomography, Emission-Computed, Single-Photon/instrumentation , Heart Ventricles/diagnostic imaging , Humans
4.
IEEE Trans Med Imaging ; 39(4): 833-843, 2020 04.
Article En | MEDLINE | ID: mdl-31425068

Modern small-animal SPECT systems use multiple pinhole collimators per detector to increase sensitivity while still maintaining high resolution. This resolution is a combination of aperture resolution combined with detector resolution, which is mitigated by magnification. Higher magnification results in better resolution, but fewer apertures per detector. When multiple pinhole collimators project onto the same detector, those with a rectangular field of view (FOV) can be packed more tightly than those with a circular FOV. In addition, a rectangular aperture can be used to obtain different resolution-sensitivity tradeoffs in the two orthogonal directions. Thus, these rectangular-pinhole collimators can have independent FOVs and independent resolution values in the two directions of the rectangular aperture. Previous work has determined the amount of penetration for circular pinholes (i.e., circular apertures with circular FOVs), where the pinhole walls were modeled as cones. In this work, a formula for the penetrative sensitivity for rectangular apertures with a rectangular FOV is determined. The formula was validated using numerical calculations for various combinations of acceptance angles, aperture sizes, linear attenuation coefficients, and incidence angles.


Image Processing, Computer-Assisted/methods , Tomography, Emission-Computed, Single-Photon/methods , Animals
5.
Phys Med Biol ; 64(6): 065018, 2019 03 14.
Article En | MEDLINE | ID: mdl-30721887

Myocardial blood flow and myocardial blood flow reserve (MBFR) measurements are often used clinically to quantify coronary microvascular function. Developing imaging-based methods to measure MBFR for research in mice would be advantageous for evaluating new treatment methods for coronary microvascular disease (CMVD), yet this is more challenging in mice than in humans. This work investigates microSPECT's quantitative capabilities of cardiac imaging by utilizing a multi-part cardiac phantom and applying a known kinetic model to synthesize kinetic data from static data, allowing for assessment of kinetic modeling accuracy. The phantom was designed with four main components: two left-ventricular (LV) myocardial sections and two LV blood-pool sections, sized for end-systole (ES) and end-diastole (ED). Each section of the phantom was imaged separately while acquiring list-mode data. These static, separate-compartment data were manipulated into synthetic dynamic data using a kinetic model representing the myocardium and blood-pool activity concentrations over time and then combined into a set of dynamic image frames and reconstructed. Regions of interest were drawn on the resulting images, and kinetic parameters were estimated. This process was performed for three tracer uptake values (K 1), three myocardial wall thicknesses, ten filter parameters, and 20 iterations for 25 noise ensembles. The degree of filtering and iteration number were optimized to minimize the root mean-squared error (RMSE) of K 1 values, with the largest number of iterations and minimal filtering yielding the lowest error. Using the optimized parameters, K 1 was determined with reasonable error (~3% RMSE) over all wall thicknesses and K 1 input values. This work demonstrates that accurate and precise measurements of K 1 are possible for the U-SPECT+ system used in this study, for several different uptake rates and LV dimensions. Additionally, it allows for future investigation utilizing other imaging systems, including PET studies with any radiotracer, as well as with additional phantom parts containing lesions.


Heart/diagnostic imaging , Heart/physiology , Models, Theoretical , Myocardium/metabolism , Positron-Emission Tomography/methods , Tomography, Emission-Computed, Single-Photon/methods , Animals , Mice , Phantoms, Imaging
6.
J Nucl Cardiol ; 25(5): 1742-1756, 2018 10.
Article En | MEDLINE | ID: mdl-28176255

BACKGROUND: Accurate quantification of plaque imaging using 18F-NaF PET requires partial volume correction (PVC). METHODS: PVC of PET data was implemented by the use of a local projection (LP) method. LP-based PVC was evaluated with an image quality (NEMA) and with a thorax phantom with "plaque-type" lesions of 18-36 mL. The validated PVC method was then applied to a cohort of 17 patients, each with at least one plaque in the carotid or ascending aortic arteries. In total, 51 calcified (HU > 110) and 16 non-calcified plaque lesions (HU < 110) were analyzed. The lesion-to-background ratio (LBR) and the relative change of LBR (ΔLBR) were measured on PET. RESULTS: Following PVC, LBR of the spheres (NEMA phantom) was within 10% of the original values. LBR of the thoracic lesions increased by 155% to 440% when the LP-PVC method was applied to the PET images. In patients, PVC increased the LBR in both calcified [mean = 78% (-8% to 227%)] and non-calcified plaques [mean = 41%, (-9%-104%)]. CONCLUSIONS: PVC helps to improve LBR of plaque-type lesions in both phantom studies and clinical patients. Better results were obtained when the PVC method was applied to images reconstructed with point spread function modeling.


Plaque, Atherosclerotic/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals , Adult , Aged , Coronary Artery Disease/diagnostic imaging , Female , Fluorine Radioisotopes , Humans , Male , Middle Aged , Phantoms, Imaging , Sodium Fluoride
7.
Med Phys ; 43(12): 6336, 2016 Dec.
Article En | MEDLINE | ID: mdl-27908172

PURPOSE: One approach to preclinical single-photon emission computed tomography (SPECT) imaging that provides both high resolution and high sensitivity is based on imaging a mouse inside a collimating tube; many magnified pinhole projection images from a small target region, e.g., the heart, can be recorded simultaneously on multiple detectors with little multiplexing since each pinhole aperture's opening angle is restricted to view mostly the target organ. However, to obtain complete data for reconstruction, it may be necessary to scan the mouse through the target region of the tube. The authors are developing a different approach based on acquisition and reconstruction of both low-resolution and high-resolution projection data acquired sequentially through many pinholes embedded in two tungsten tube sections of different diameters, a "scout" section and a high-resolution section, placed end-to-end along the axis of a triple-head clinical SPECT scanner. This paper describes the design procedures used to determine the geometric parameters of two new collimator-tube sections, as well as one approach for joint reconstruction of data acquired from both sections. METHODS: The high-resolution section was designed by projecting as many pinhole views of a simulated mouse heart as possible over each detector's camera, with no overlapping of heart projections and minimal overlapping between adjacent "hot" organ and cardiac projections. The authors then jointly optimized the geometric design of the scout section for a triple-detector camera system, as well as the number of maximum-likelihood expectation maximization (MLEM) iterations required to provide minimum mean-squared error of reconstructed voxel counts throughout a 7-cm axial range, with the constraints of fixed, 2.4-mm scout system resolution at the tube center for all apertures, limited multiplexing, and no detector motion. Simulated mouse projection data from both tube sections were then reconstructed to illustrate a simple approach for using high-resolution data to improve the whole-body scout images within a cylindrical region surrounding the heart. RESULTS: The 2-cm-inner-radius high-resolution tube section accommodated 87 platinum-iridium pinhole inserts, each with a 0.3-mm square aperture; their radial distances from the centerline of the system ranged from 2.2 to 3.0 cm. The optimal radial distance to the closest scout pinhole and optimal number of MLEM iterations were 4.4 cm and 35 iterations, respectively, and the radial distances of the 39 scout pinholes ranged from 4.4 to 4.8 cm; aperture sizes ranged from 1.1 to 1.7 mm transaxially and 0.9-1.5 mm axially. After including data from the high-resolution section viewing the heart region into whole-body mouse reconstructions from scout data, the authors obtained high-resolution images of the heart, embedded within lower resolution images of the body, with minimal artifacts. CONCLUSIONS: The authors have optimized a dual-resolution collimator tube that provides both whole-body projections of a mouse and more targeted projections centered on the heart that can be jointly reconstructed to obtain high-resolution images of the heart embedded within lower-resolution whole-body images.


Heart/diagnostic imaging , Tomography, Emission-Computed, Single-Photon/instrumentation , Animals , Equipment Design , Image Processing, Computer-Assisted , Mice
8.
Med Phys ; 43(10): 5475, 2016 Oct.
Article En | MEDLINE | ID: mdl-27782695

PURPOSE: The authors are currently developing a dual-resolution multiple-pinhole microSPECT imaging system based on three large NaI(Tl) gamma cameras. Two multiple-pinhole tungsten collimator tubes will be used sequentially for whole-body "scout" imaging of a mouse, followed by high-resolution (hi-res) imaging of an organ of interest, such as the heart or brain. Ideally, the whole-body image will be reconstructed in real time such that data need only be acquired until the area of interest can be visualized well-enough to determine positioning for the hi-res scan. The authors investigated the utility of the origin ensemble (OE) algorithm for online and offline reconstructions of the scout data. This algorithm operates directly in image space, and can provide estimates of image uncertainty, along with reconstructed images. Techniques for accelerating the OE reconstruction were also introduced and evaluated. METHODS: System matrices were calculated for our 39-pinhole scout collimator design. SPECT projections were simulated for a range of count levels using the MOBY digital mouse phantom. Simulated data were used for a comparison of OE and maximum-likelihood expectation maximization (MLEM) reconstructions. The OE algorithm convergence was evaluated by calculating the total-image entropy and by measuring the counts in a volume-of-interest (VOI) containing the heart. Total-image entropy was also calculated for simulated MOBY data reconstructed using OE with various levels of parallelization. RESULTS: For VOI measurements in the heart, liver, bladder, and soft-tissue, MLEM and OE reconstructed images agreed within 6%. Image entropy converged after ∼2000 iterations of OE, while the counts in the heart converged earlier at ∼200 iterations of OE. An accelerated version of OE completed 1000 iterations in <9 min for a 6.8M count data set, with some loss of image entropy performance, whereas the same dataset required ∼79 min to complete 1000 iterations of conventional OE. A combination of the two methods showed decreased reconstruction time and no loss of performance when compared to conventional OE alone. CONCLUSIONS: OE-reconstructed images were found to be quantitatively and qualitatively similar to MLEM, yet OE also provided estimates of image uncertainty. Some acceleration of the reconstruction can be gained through the use of parallel computing. The OE algorithm is useful for reconstructing multiple-pinhole SPECT data and can be easily modified for real-time reconstruction.


Image Processing, Computer-Assisted/methods , Tomography, Emission-Computed, Single-Photon , Animals , Mice , Phantoms, Imaging , Time Factors
9.
Med Phys ; 43(8): 4734, 2016 Aug.
Article En | MEDLINE | ID: mdl-27487891

PURPOSE: Noise levels of brain SPECT images are highest in central regions, due to preferential attenuation of photons emitted from deep structures. To address this problem, the authors have designed a novel collimator for brain SPECT imaging that yields greatly increased sensitivity near the center of the brain without loss of resolution. This hybrid collimator consisted of ultrashort cone-beam holes in the central regions and slant-holes in the periphery (USCB). We evaluated this collimator for quantitative brain imaging tasks. METHODS: Owing to the uniqueness of the USCB collimation, the hole pattern required substantial variations in collimator parameters. To utilize the lead-casting technique, the authors designed two supporting plates to position about 37 000 hexagonal, slightly tapered pins. The holes in the supporting plates were modeled to yield the desired focal length, hole length, and septal thickness. To determine the properties of the manufactured collimator and to compute the system matrix, the authors prepared an array of point sources that covered the entire detector area. Each point source contained 32 µCi of Tc-99m at the first scan time. The array was imaged for 5 min at each of the 64 shifted locations to yield a 2-mm sampling distance, and hole parameters were calculated. The sensitivity was also measured using a point source placed along the central ray at several distances from the collimator face. High-count projection data from a five-compartment brain phantom were acquired with the three collimators on a dual-head SPECT/CT system. The authors calculated Cramer-Rao bounds on the precision of estimates of striatal and background activity concentration. In order to assess the new collimation system to detect changes in striatal activity, the authors evaluated the precision of measuring a 5% decrease in right putamen activity. The authors also reconstructed images of projection data obtained by summing data from the individual phantom compartments. RESULTS: The sensitivity of the novel cone-beam collimator varied with distance from the detector face; it was higher than that of the fan-beam collimator by factors ranging from 2.7 to 162. Examination of the projections of the point sources revealed that only a few holes were distorted or partially blocked, indicating that the intensive manual fabrication process was very successful. Better reconstructed phantom images were obtained from the USCB+FAN collimator pair than from either LEHR or FAN collimation. For the left caudate, located near the center of the brain, the detected counts were 9.8 (8.3) times higher for UCSB compared with LEHR (FAN), averaged over 60 views. The task-specific SNR for detecting a 5% decrease in putamen uptake was 7.4 for USCB and 3.2 for LEHR. CONCLUSIONS: The authors have designed and manufactured a novel collimator for brain SPECT imaging. The sensitivity is much higher than that of a fan-beam collimator. Because of differences between the manufactured collimator and its design, reconstruction of the data requires a measured system matrix. The authors have demonstrated the potential of USCB collimation for improved precision in estimating striatal uptake. The novel collimator may be useful for early detection of Parkinson's disease, and for monitoring therapy response and disease progression.


Brain/diagnostic imaging , Signal-To-Noise Ratio , Tomography, Emission-Computed, Single-Photon/methods , Phantoms, Imaging
10.
J Nucl Cardiol ; 23(4): 657-67, 2016 08.
Article En | MEDLINE | ID: mdl-27033352

BACKGROUND: Recent technological advances in myocardial perfusion imaging may warrant the use of lower injected activity. We evaluated whether quantitative measures of stress myocardial perfusion defects using Tc-99m sestamibi and low-energy high-resolution (LEHR) collimators are equivalent to lower dose SPECT-CT with cardiac multifocal collimators and software (IQ·SPECT). METHODS: 93 patients underwent one-day rest-stress gated SPECT-CT. Following conventional rest imaging, 925-1100 MBq (25-30 mCi) of Tc-99m sestamibi was injected during stress testing. Stress SPECT-CT images were acquired two ways: with LEHR (13 minutes) and IQ·SPECT (7 minutes). Low-dose IQ·SPECT stress was simulated by subsampling the full-dose data to half-, quarter-, and eighth-count levels. Abnormalities were quantified using the total perfusion deficit (TPD) score and dose-specific databases. RESULTS: The mean ± SD of the differences between LEHR and IQ·SPECT TPD scores were -1.01 ± 5.36%, -0.10 ± 5.81%, 1.78 ± 4.81%, and 1.75 ± 6.05% at full, half, quarter, and eighth doses, respectively. Differences were statistically significant for quarter and eighth doses. Correlation between LEHR and IQ·SPECT was excellent at all doses (R ≥ 0.93). Bland-Altman plots demonstrated minimal bias. CONCLUSIONS: With IQ·SPECT, quantitative stress SPECT-CT imaging is possible with half of the standard injected activity in half the time.


Algorithms , Image Interpretation, Computer-Assisted/methods , Myocardial Perfusion Imaging/methods , Radiation Exposure/prevention & control , Radiation Protection/methods , Single Photon Emission Computed Tomography Computed Tomography/methods , Adult , Aged , Aged, 80 and over , Exercise Test/methods , Female , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/instrumentation , Male , Middle Aged , Radiation Dosage , Radiation Exposure/analysis , Radiation Protection/instrumentation , Radiopharmaceuticals , Reproducibility of Results , Sensitivity and Specificity , Single Photon Emission Computed Tomography Computed Tomography/instrumentation , Technetium Tc 99m Sestamibi , Time Factors
11.
Nat Med ; 22(2): 163-74, 2016 Feb.
Article En | MEDLINE | ID: mdl-26752519

Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element-binding protein 2 (IRP2) as an important COPD susceptibility gene and have shown that IRP2 protein is increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD. By integrating RNA immunoprecipitation followed by sequencing (RIP-seq), RNA sequencing (RNA-seq), and gene expression and functional enrichment clustering analysis, we identified Irp2 as a regulator of mitochondrial function in the lungs of mice. Irp2 increased mitochondrial iron loading and levels of cytochrome c oxidase (COX), which led to mitochondrial dysfunction and subsequent experimental COPD. Frataxin-deficient mice, which had higher mitochondrial iron loading, showed impaired airway mucociliary clearance (MCC) and higher pulmonary inflammation at baseline, whereas mice deficient in the synthesis of cytochrome c oxidase, which have reduced COX, were protected from CS-induced pulmonary inflammation and impairment of MCC. Mice treated with a mitochondrial iron chelator or mice fed a low-iron diet were protected from CS-induced COPD. Mitochondrial iron chelation also alleviated CS-induced impairment of MCC, CS-induced pulmonary inflammation and CS-associated lung injury in mice with established COPD, suggesting a critical functional role and potential therapeutic intervention for the mitochondrial-iron axis in COPD.


Bronchitis/genetics , Iron Chelating Agents/pharmacology , Iron-Binding Proteins/genetics , Iron/metabolism , Lung/metabolism , Mitochondria/metabolism , Nicotiana , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Emphysema/genetics , Smoke/adverse effects , Aged , Aged, 80 and over , Airway Remodeling , Animals , Bronchitis/etiology , Disease Models, Animal , Electron Transport Complex IV/metabolism , Electrophoretic Mobility Shift Assay , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Gene Expression Profiling , Humans , Immunoblotting , Immunohistochemistry , Immunoprecipitation , Iron Regulatory Protein 2/genetics , Iron Regulatory Protein 2/metabolism , Iron, Dietary , Lung/drug effects , Lung Injury/etiology , Lung Injury/genetics , Membrane Potential, Mitochondrial , Mice , Mice, Knockout , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Mitochondria/drug effects , Mucociliary Clearance/genetics , Pneumonia/etiology , Pneumonia/genetics , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/etiology , Real-Time Polymerase Chain Reaction , Smoking/adverse effects , Frataxin
12.
Med Phys ; 42(12): 6933-44, 2015 Dec.
Article En | MEDLINE | ID: mdl-26632049

PURPOSE: Recently, a multipinhole collimator with inserts that have both rectangular apertures and rectangular fields of view (FOVs) has been proposed for SPECT imaging since it can tile the projection onto the detector efficiently and the FOVs in transverse and axial directions become separable. The purpose of this study is to investigate the image properties of rectangular-aperture pinholes with submillimeter apertures sizes. METHODS: In this work, the authors have conducted sensitivity and FOV experiments for 18 replicates of a prototype insert fabricated in platinum/iridium (Pt/Ir) alloy with submillimeter square-apertures. A sin(q)θ fit to the experimental sensitivity has been performed for these inserts. For the FOV measurement, the authors have proposed a new formula to calculate the projection intensity of a flood image on the detector, taking into account the penumbra effect. By fitting this formula to the measured projection data, the authors obtained the acceptance angles. RESULTS: The mean (standard deviation) of fitted sensitivity exponents q and effective edge lengths we were, respectively, 10.8 (1.8) and 0.38 mm (0.02 mm), which were close to the values, 7.84 and 0.396 mm, obtained from Monte Carlo calculations using the parameters of the designed inserts. For the FOV measurement, the mean (standard deviation) of the transverse and axial acceptances were 35.0° (1.2°) and 30.5° (1.6°), which are in good agreement with the designed values (34.3° and 29.9°). CONCLUSIONS: These results showed that the physical properties of the fabricated inserts with submillimeter aperture size matched our design well.


Tomography, Emission-Computed, Single-Photon/instrumentation , Calibration , Computer Simulation , Equipment Design , Iridium , Monte Carlo Method , Platinum , Tomography, Emission-Computed, Single-Photon/methods
13.
Med Phys ; 42(8): 4796-813, 2015 Aug.
Article En | MEDLINE | ID: mdl-26233207

In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications.


Tomography, Emission-Computed, Single-Photon/instrumentation , Animals , Equipment Design , Humans , Tomography, Emission-Computed, Single-Photon/methods
14.
Health Phys ; 108(5): 520-37, 2015 May.
Article En | MEDLINE | ID: mdl-25811150

To reconstruct reliable nuclear medicine-related occupational radiation doses or doses received as patients from radiopharmaceuticals over the last five decades, the authors assessed which radiopharmaceuticals were used in different time periods, their relative frequency of use, and typical values of the administered activity. This paper presents data on the changing patterns of clinical use of radiopharmaceuticals and documents the range of activity administered to adult patients undergoing diagnostic nuclear medicine procedures in the U.S. between 1960 and 2010. Data are presented for 15 diagnostic imaging procedures that include thyroid scan and thyroid uptake; brain scan; brain blood flow; lung perfusion and ventilation; bone, liver, hepatobiliary, bone marrow, pancreas, and kidney scans; cardiac imaging procedures; tumor localization studies; localization of gastrointestinal bleeding; and non-imaging studies of blood volume and iron metabolism. Data on the relative use of radiopharmaceuticals were collected using key informant interviews and comprehensive literature reviews of typical administered activities of these diagnostic nuclear medicine studies. Responses of key informants on relative use of radiopharmaceuticals are in agreement with published literature. Results of this study will be used for retrospective reconstruction of occupational and personal medical radiation doses from diagnostic radiopharmaceuticals to members of the U.S. radiologic technologists' cohort and in reconstructing radiation doses from occupational or patient radiation exposures to other U.S. workers or patient populations.


Nuclear Medicine , Radiopharmaceuticals , Bone and Bones/diagnostic imaging , Brain/diagnostic imaging , Cerebrovascular Circulation , Humans , Liver/diagnostic imaging , Neoplasms/diagnostic imaging , Pulmonary Circulation , Radionuclide Imaging , Thyroid Gland/diagnostic imaging , Time Factors , United States
15.
Med Phys ; 42(3): 1398-410, 2015 Mar.
Article En | MEDLINE | ID: mdl-25735294

PURPOSE: Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. METHODS: To recover triple coincidences, the authors' method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. RESULTS: The addition of triple-coincidence events with the authors' method increased peak NEC rates of the scanner by 26.6% and 32% for mouse- and rat-sized objects, respectively. This increase in NEC-rate performance was also reflected in the image-quality metrics. Images reconstructed using double and triple coincidences recovered using their method had better signal-to-noise ratio than those obtained using only double coincidences, while preserving spatial resolution and contrast. Distribution of triple coincidences using an equal-weighting scheme increased apparent system sensitivity but degraded image quality. The performance boost provided by the inclusion of triple coincidences using their method allowed to reduce the acquisition time of standard imaging procedures by up to ∼25%. CONCLUSIONS: Recovering triple coincidences with the proposed method can effectively increase the sensitivity of current clinical and preclinical PET systems without compromising other parameters like spatial resolution or contrast.


Positron-Emission Tomography/methods , Animals , Gamma Rays , Image Processing, Computer-Assisted , Mice , Positron-Emission Tomography/instrumentation , Rats , Signal-To-Noise Ratio
16.
J Nucl Med ; 56(4): 592-9, 2015 Apr.
Article En | MEDLINE | ID: mdl-25766891

Radionuclide myocardial perfusion imaging (MPI) plays a vital role in the evaluation and management of patients with coronary artery disease. However, because of a steep growth in MPI in the mid 2000s, concerns about inappropriate use of MPI and imaging-related radiation exposure increased. In response, the professional societies developed appropriate-use criteria for MPI. Simultaneously, novel technology, image-reconstruction software for traditional scanners, and dedicated cardiac scanners emerged and facilitated the performance of MPI with low-dose and ultra-low-dose radiotracers. This paper provides a practical approach to performing low-radiation-dose MPI using traditional and novel technologies.


Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Heart/diagnostic imaging , Myocardial Perfusion Imaging/methods , Radiation Dosage , Tomography, Emission-Computed, Single-Photon/methods , Humans , Image Processing, Computer-Assisted/methods , Patient Selection , Quality Control , Radiation Protection/methods , Radioisotopes , Software
17.
Eur J Nucl Med Mol Imaging ; 41(9): 1652-62, 2014 Sep.
Article En | MEDLINE | ID: mdl-24841414

PURPOSE: Cardiac amyloidosis, a restrictive heart disease with high mortality and morbidity, is underdiagnosed due to limited targeted diagnostic imaging. The primary aim of this study was to evaluate the utility of (18)F-florbetapir for imaging cardiac amyloidosis. METHODS: We performed a pilot study of cardiac (18)F-florbetapir PET in 14 subjects: 5 control subjects without amyloidosis and 9 subjects with documented cardiac amyloidosis. Standardized uptake values (SUV) of (18)F-florbetapir in the left ventricular (LV) myocardium, blood pool, liver, and vertebral bone were determined. A (18)F-florbetapir retention index (RI) was computed. Mean LV myocardial SUVs, target-to-background ratio (TBR, myocardial/blood pool SUV ratio) and myocardial-to-liver SUV ratio between 0 and 30 min were calculated. RESULTS: Left and right ventricular myocardial uptake of (18)F-florbetapir were noted in all the amyloid subjects and in none of the control subjects. The RI, TBR, LV myocardial SUV and LV myocardial to liver SUV ratio were all significantly higher in the amyloidosis subjects than in the control subjects (RI median 0.043 min(-1), IQR 0.034 - 0.051 min(-1), vs. 0.023 min(-1), IQR 0.015 - 0.025 min(-1), P = 0.002; TBR 1.84, 1.64 - 2.50, vs. 1.26, IQR 0.91 - 1.36, P = 0.001; LV myocardial SUV 3.84, IQR 1.87 - 5.65, vs. 1.35, IQR 1.17 - 2.28, P = 0.029; ratio of LV myocardial to liver SUV 0.67, IQR 0.44 - 1.64, vs. 0.18, IQR 0.15 - 0.35, P = 0.004). The myocardial RI, TBR and myocardial to liver SUV ratio also distinguished the control subjects from subjects with transthyretin and those with light chain amyloid. CONCLUSION: (18)F-Florbetapir PET may be a promising technique to image light chain and transthyretin cardiac amyloidosis. Its role in diagnosing amyloid in other organ systems and in assessing response to therapy needs to be further studied.


Amyloidosis/diagnostic imaging , Aniline Compounds , Ethylene Glycols , Heart Diseases/diagnostic imaging , Positron-Emission Tomography/methods , Adult , Aged , Amyloid/chemistry , Amyloidosis/genetics , Amyloidosis/metabolism , Biological Transport , Case-Control Studies , Diagnosis, Differential , Female , Heart Diseases/genetics , Heart Diseases/metabolism , Humans , Male , Middle Aged , Myocardium/metabolism , Organ Specificity , Pilot Projects , Prealbumin/genetics
18.
Med Phys ; 40(8): 082501, 2013 Aug.
Article En | MEDLINE | ID: mdl-23927346

PURPOSE: A well-established approach for diagnostic imaging of osteomyelitis (OM), a bone infection, is simultaneous SPECT-CT of 99mTc sulfur colloid (SC) and 111In white blood cells (WBC). This method provides essentially perfect spatial registration of the tracers within anatomic sites of interest. Currently, diagnosis is based purely on a visual assessment-where relative discordance between 99mTc and 111In uptake in bone, i.e., high 111In and low 99mTc, suggests OM. To achieve more quantitative images, noise, scatter, and crosstalk between radionuclides must be addressed through reconstruction. Here the authors compare their Monte Carlo-based joint OSEM (MC-JOSEM) algorithm, which reconstructs both radionuclides simultaneously, to a more conventional triple-energy window-based reconstruction (TEW-OSEM), and to iterative reconstruction with no compensation for scatter (NC-OSEM). METHODS: The authors created numerical phantoms of the foot and torso. Multiple bone-infection sites were modeled using high-count Monte Carlo simulation. Counts per voxel were then scaled to values appropriate for 111In WBC and 99mTc SC imaging. Ten independent noisy projection image sets were generated by drawing random Poisson deviates from these very low-noise images. Data were reconstructed using the two iterative scatter-compensation methods, TEW-OSEM and MC-JOSEM, as well as the uncorrected method (NC-OSEM). Mean counts in volumes of interest (VOIs) were used to evaluate the bias and precision of each method. Data were also acquired using a phantom, approximately the size of an adult ankle, consisting of regions representing infected and normal bone marrow, within a bone-like attenuator and surrounding soft tissue; each compartment contained a mixture of 111In and 99mTc. Low-noise data were acquired during multiple short scans over 29 h on a Siemens Symbia T6 SPECT-CT with medium-energy collimators. Pure 99mTc and 111In projection datasets were derived by fitting the acquired projections to the sum of 99mTc and 111In contributions, using the known half-lives. Uncontaminated data were scaled and recombined into six datasets with different activity ratios; ten Poisson noise realizations were then generated for each ratio. VOIs in each of the compartments were used to evaluate the bias and precision of each method with respect to reconstructions of uncontaminated datasets. In addition to the simulated and acquired phantom images, the authors reconstructed patient images with MC-JOSEM and TEW-OSEM. Patient reconstructions were assessed qualitatively for lesion contrast, spatial definition, and scatter. RESULTS: For all simulated and acquired infection phantoms, the root-mean squared-error of measured 99mTc activity was significantly improved with MC-JOSEM and TEW-OSEM in comparison to NC-OSEM reconstructions. While MC-JOSEM trended toward outperforming TEW-OSEM, the improvement was only found to be significant (p<0.001) for the acquired bone phantom in which a wide range of 111In∕99mTc concentration ratios were tested. In all cases, scatter correction did not significantly improve 111In quantitation. CONCLUSIONS: Compensation for scatter and crosstalk is useful for improving quality, bias, and precision of 99mTc activity estimates in simultaneous dual-radionuclide imaging of OM. The use of the more rigorous MC-based estimates provided marginal improvements over TEW. While the phantom results were encouraging, more subjects are needed to evaluate the usefulness of quantitative 111In∕99mTc SPECT-CT in the clinic.


Indium Radioisotopes , Multimodal Imaging/methods , Osteomyelitis/diagnostic imaging , Technetium , Tomography, Emission-Computed, Single-Photon/methods , Tomography, X-Ray Computed/methods , Adult , Foot/diagnostic imaging , Humans , Phantoms, Imaging , Time Factors , Torso/diagnostic imaging
19.
Med Sci Sports Exerc ; 45(8): 1629-38, 2013 Aug.
Article En | MEDLINE | ID: mdl-23863547

PURPOSE: A previous-day recall (PDR) may be a less error-prone alternative to traditional questionnaire-based estimates of physical activity and sedentary behavior (e.g., past year), but the validity of the method is not established. We evaluated the validity of an interviewer administered PDR in adolescents (12-17 yr) and adults (18-71 yr). METHODS: In a 7-d study, participants completed three PDR, wore two activity monitors, and completed measures of social desirability and body mass index. PDR measures of active and sedentary time was contrasted against an accelerometer (ActiGraph) by comparing both to a valid reference measure (activPAL) using measurement error modeling and traditional validation approaches. RESULTS: Age- and sex-specific mixed models comparing PDR to activPAL indicated the following: 1) there was a strong linear relationship between measures for sedentary (regression slope, ß1 = 0.80-1.13) and active time (ß1 = 0.64-1.09), 2) person-specific bias was lower than random error, and 3) correlations were high (sedentary: r = 0.60-0.81; active: r = 0.52-0.80). Reporting errors were not associated with body mass index or social desirability. Models comparing ActiGraph to activPAL indicated the following: 1) there was a weaker linear relationship between measures for sedentary (ß1 = 0.63-0.73) and active time (ß1 = 0.61-0.72), (2) person-specific bias was slightly larger than random error, and (3) correlations were high (sedentary: r = 0.68-0.77; active: r = 0.57-0.79). CONCLUSIONS: Correlations between the PDR and the activPAL were high, systematic reporting errors were low, and the validity of the PDR was comparable with the ActiGraph. PDR may have value in studies of physical activity and health, particularly those interested in measuring the specific type, location, and purpose of activity-related behaviors.


Activities of Daily Living , Mental Recall , Motor Activity/physiology , Sedentary Behavior , Social Desirability , Actigraphy , Adolescent , Adult , Aged , Body Mass Index , Child , Female , Humans , Male , Middle Aged , Young Adult
20.
IEEE Trans Med Imaging ; 32(10): 1829-39, 2013 Oct.
Article En | MEDLINE | ID: mdl-23744672

We investigate an approach to evaluation of emission-tomography (ET) imaging systems used for region-of-interest (ROI) estimation tasks. In the evaluation we employ the concept of "emission counts" (EC), which are the number of events per voxel emitted during a scan. We use the reduction in posterior variance of ROI EC, compared to the prior ROI EC variance, as the metric of primary interest, which we call the "posterior variance reduction index" (PVRI). Systems that achieve a higher PVRI are considered superior to systems with lower PVRI. The approach is independent of the reconstruction method and is applicable to all photon-limited data types including list-mode data. We analyzed this approach using a model of 2-D tomography, and compared our results to the classical theory of tomographic sampling. We found that performance evaluations using the PVRI index were consistent with the classical theory. System evaluation based on EC posterior variance is an intuitively appealing and physically meaningful method that is useful for evaluation of system performance in ROI quantitation tasks.


Computer Simulation , Models, Theoretical , Tomography, Emission-Computed/methods , Tomography, Emission-Computed/standards , Bayes Theorem , Monte Carlo Method
...