Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Med Chem ; 66(24): 16783-16806, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38085679

RESUMEN

The chromatin-associated protein WDR5 (WD repeat domain 5) is an essential cofactor for MYC and a conserved regulator of ribosome protein gene transcription. It is also a high-profile target for anti-cancer drug discovery, with proposed utility against both solid and hematological malignancies. We have previously discovered potent dihydroisoquinolinone-based WDR5 WIN-site inhibitors with demonstrated efficacy and safety in animal models. In this study, we sought to optimize the bicyclic core to discover a novel series of WDR5 WIN-site inhibitors with improved potency and physicochemical properties. We identified the 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one core as an alternative scaffold for potent WDR5 inhibitors. Additionally, we used X-ray structural analysis to design partially saturated bicyclic P7 units. These benzoxazepinone-based inhibitors exhibited increased cellular potency and selectivity and favorable physicochemical properties compared to our best-in-class dihydroisoquinolinone-based counterparts. This study opens avenues to discover more advanced WDR5 WIN-site inhibitors and supports their development as novel anti-cancer therapeutics.


Asunto(s)
Antineoplásicos , Repeticiones WD40 , Animales , Descubrimiento de Drogas , Antineoplásicos/farmacología
2.
Proc Natl Acad Sci U S A ; 120(1): e2211297120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574664

RESUMEN

WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses. Thus, WDR5 has been recognized as an attractive therapeutic target for treating both solid and hematological tumors. Previously, small-molecule inhibitors of the WDR5-interaction (WIN) site and WDR5 degraders have demonstrated robust in vitro cellular efficacy in cancer cell lines and established the therapeutic potential of WDR5. However, these agents have not demonstrated significant in vivo efficacy at pharmacologically relevant doses by oral administration in animal disease models. We have discovered WDR5 WIN-site inhibitors that feature bicyclic heteroaryl P7 units through structure-based design and address the limitations of our previous series of small-molecule inhibitors. Importantly, our lead compounds exhibit enhanced on-target potency, excellent oral pharmacokinetic (PK) profiles, and potent dose-dependent in vivo efficacy in a mouse MV4:11 subcutaneous xenograft model by oral dosing. Furthermore, these in vivo probes show excellent tolerability under a repeated high-dose regimen in rodents to demonstrate the safety of the WDR5 WIN-site inhibition mechanism. Collectively, our results provide strong support for WDR5 WIN-site inhibitors to be utilized as potential anticancer therapeutics.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neoplasias , Repeticiones WD40 , Animales , Humanos , Ratones , Cromatina , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Animales , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
3.
J Med Chem ; 65(8): 6287-6312, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35436124

RESUMEN

WD repeat domain 5 (WDR5) is a nuclear scaffolding protein that forms many biologically important multiprotein complexes. The WIN site of WDR5 represents a promising pharmacological target in a variety of human cancers. Here, we describe the optimization of our initial WDR5 WIN-site inhibitor using a structure-guided pharmacophore-based convergent strategy to improve its druglike properties and pharmacokinetic profile. The core of the previous lead remained constant while a focused SAR effort on the three pharmacophore units was combined to generate a new in vivo lead series. Importantly, this new series of compounds has picomolar binding affinity, improved cellular antiproliferative activity and selectivity, and increased kinetic aqueous solubility. They also exhibit a desirable oral pharmacokinetic profile with manageable intravenous clearance and high oral bioavailability. Thus, these new leads are useful probes toward studying the effects of WDR5 inhibition.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Humanos , Repeticiones WD40
5.
Clin Infect Dis ; 74(1): 24-31, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33846730

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) has strained healthcare systems with patient hospitalizations and deaths. Anti-spike monoclonal antibodies, including bamlanivimab, have demonstrated reduction in hospitalization rates in clinical trials, yet real-world evidence is lacking. METHODS: We conducted a retrospective case-control study across a single healthcare system of nonhospitalized patients, age 18 years or older, with documented positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing, risk factors for severe COVID-19, and referrals for bamlanivimab via emergency use authorization. Cases were defined as patients who received bamlanivimab; contemporary controls had a referral order placed but did not receive bamlanivimab. The primary outcome was 30-day hospitalization rate from initial positive SARS-CoV-2 polymerase chain reaction (PCR). Descriptive statistics, including χ 2 and Mann-Whitney U test, were performed. Multivariable logistic regression was used for adjusted analysis to evaluate independent associations with 30-day hospitalization. RESULTS: Between 30 November 2020 and 19 January 2021, 218 patients received bamlanivimab (cases), and 185 were referred but did not receive drug (controls). Thirty-day hospitalization rate was significantly lower among patients who received bamlanivimab (7.3% vs 20.0%, risk ratio [RR] 0.37, 95% confidence interval [CI]: .21-.64, P < .001), and the number needed to treat was 8. On logistic regression, odds of hospitalization were increased in patients not receiving bamlanivimab and with a higher number of pre-specified comorbidities (odds ratio [OR] 4.19 ,95% CI: 1.31-2.16, P < .001; OR 1.68, 95% CI: 2.12-8.30, P < .001, respectively). CONCLUSIONS: Ambulatory patients with COVID-19 who received bamlanivimab had a lower 30-day hospitalization than control patients in real-world experience. We identified receipt of bamlanivimab and fewer comorbidities as protective factors against hospitalization.Bamlanivimab's role in preventing hospitalization associated with coronavirus disease 2019 (COVID-19) remains unclear. In a real-world, retrospective study of 403 high-risk, ambulatory patients with COVID-19, receipt of bamlanivimab compared to no monoclonal antibody therapy was associated with lower 30-day hospitalization.


Asunto(s)
COVID-19 , Adolescente , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Estudios de Casos y Controles , Humanos , Estudios Retrospectivos , SARS-CoV-2
6.
Open Forum Infect Dis ; 8(12): ofab554, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34901302

RESUMEN

A multicenter case series of 21 patients were treated with imipenem-cilastatin-relebactam. There were mixed infection sources, with pulmonary infections (11/21,52%) composing the majority. The primary pathogen was Pseudomonas aeruginosa (16/21, 76%), and 15/16 (94%) isolates were multidrug-resistant. Thirty-day survival occurred in 14/21 (67%) patients. Two patients experienced adverse effects.

7.
J Med Chem ; 64(8): 4913-4946, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33822623

RESUMEN

Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are oncogenic for a number of malignancies, primarily low-grade gliomas and acute myeloid leukemia. We report a medicinal chemistry campaign around a 7,7-dimethyl-7,8-dihydro-2H-1λ2-quinoline-2,5(6H)-dione screening hit against the R132H and R132C mutant forms of isocitrate dehydrogenase (IDH1). Systematic SAR efforts produced a series of potent pyrid-2-one mIDH1 inhibitors, including the atropisomer (+)-119 (NCATS-SM5637, NSC 791985). In an engineered mIDH1-U87-xenograft mouse model, after a single oral dose of 30 mg/kg, 16 h post dose, between 16 and 48 h, (+)-119 showed higher tumoral concentrations that corresponded to lower 2-HG concentrations, when compared with the approved drug AG-120 (ivosidenib).


Asunto(s)
Inhibidores Enzimáticos/química , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Piridonas/química , Animales , Encéfalo/metabolismo , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Femenino , Glicina/análogos & derivados , Glicina/uso terapéutico , Semivida , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ratones , Ratones Desnudos , Microsomas Hepáticos/metabolismo , Mutagénesis Sitio-Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Piridinas/uso terapéutico , Piridonas/metabolismo , Piridonas/uso terapéutico , Ratas , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Bioorg Med Chem Lett ; 41: 127974, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771585

RESUMEN

Lactate dehydrogenase (LDH) is a critical enzyme in the glycolytic metabolism pathway that is used by many tumor cells. Inhibitors of LDH may be expected to inhibit the metabolic processes in cancer cells and thus selectively delay or inhibit growth in transformed versus normal cells. We have previously disclosed a pyrazole-based series of potent LDH inhibitors with long residence times on the enzyme. Here, we report the elaboration of a new subseries of LDH inhibitors based on those leads. These new compounds potently inhibit both LDHA and LDHB enzymes, and inhibit lactate production in cancer cell lines.


Asunto(s)
Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Diseño de Fármacos , Éteres/farmacología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , Compuestos de Anilina/química , Antineoplásicos/química , Línea Celular Tumoral , Éteres/química , Humanos , L-Lactato Deshidrogenasa/química
9.
Am J Health Syst Pharm ; 78(7): 568-577, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33537767

RESUMEN

KEY POINTS: In a multicenter point-prevalence study, we found that the rate of supportive care was high; among those receiving COVID-19 drug therapies, adverse reactions occurred in 12% of patients. PURPOSE: There are currently no FDA-approved medications for the treatment of coronavirus disease 2019 (COVID-19). At the onset of the pandemic, off-label medication use was supported by limited or no clinical data. We sought to characterize experimental COVID-19 therapies and identify safety signals during this period. METHODS: We conducted a noninterventional, multicenter, point prevalence study of patients hospitalized with suspected/confirmed COVID-19. Clinical and treatment characteristics within a 24-hour window were evaluated in a random sample of up to 30 patients per site. The primary objective was to describe COVID-19-targeted therapies. The secondary objective was to describe adverse drug reactions (ADRs). RESULTS: A total of 352 patients treated for COVID-19 at 15 US hospitals From April 18 to May 8, 2020, were included in the study. Most patients were treated at academic medical centers (53.4%) or community hospitals (42.6%). Sixty-seven patients (19%) were receiving drug therapy in addition to supportive care. Drug therapies used included hydroxychloroquine (69%), remdesivir (10%), and interleukin-6 antagonists (9%). Five patients (7.5%) were receiving combination therapy. The rate of use of COVID-19-directed drug therapy was higher in patients with vs patients without a history of asthma (14.9% vs 7%, P = 0.037) and in patients enrolled in clinical trials (26.9% vs 3.2%, P < 0.001). Among those receiving drug therapy, 8 patients (12%) experienced an ADR, and ADRs were recognized at a higher rate in patients enrolled in clinical trials (62.5% vs 22%; odds ratio, 5.9; P = 0.028). CONCLUSION: While we observed high rates of supportive care for patients with COVID-19, we also found that ADRs were common among patients receiving drug therapy, including those enrolled in clinical trials. Comprehensive systems are needed to identify and mitigate ADRs associated with experimental COVID-19 treatments.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Quimioterapia Combinada/estadística & datos numéricos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , SARS-CoV-2 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antivirales/efectos adversos , Antivirales/uso terapéutico , Niño , Preescolar , Quimioterapia Combinada/efectos adversos , Femenino , Humanos , Hidroxicloroquina/efectos adversos , Hidroxicloroquina/uso terapéutico , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Pandemias , Prevalencia , Estudios Retrospectivos , Estados Unidos/epidemiología , Adulto Joven
10.
J Med Chem ; 63(19): 10984-11011, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32902275

RESUMEN

Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.


Asunto(s)
Inhibidores Enzimáticos/farmacología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Pirazoles/farmacología , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Semivida , Humanos , Ratones , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Med Chem ; 63(2): 656-675, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31858797

RESUMEN

WD repeat domain 5 (WDR5) is a member of the WD40-repeat protein family that plays a critical role in multiple chromatin-centric processes. Overexpression of WDR5 correlates with a poor clinical outcome in many human cancers, and WDR5 itself has emerged as an attractive target for therapy. Most drug-discovery efforts center on the WIN site of WDR5 that is responsible for the recruitment of WDR5 to chromatin. Here, we describe discovery of a novel WDR5 WIN site antagonists containing a dihydroisoquinolinone bicyclic core using a structure-based design. These compounds exhibit picomolar binding affinity and selective concentration-dependent antiproliferative activities in sensitive MLL-fusion cell lines. Furthermore, these WDR5 WIN site binders inhibit proliferation in MYC-driven cancer cells and reduce MYC recruitment to chromatin at MYC/WDR5 co-bound genes. Thus, these molecules are useful probes to study the implication of WDR5 inhibition in cancers and serve as a potential starting point toward the discovery of anti-WDR5 therapeutics.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Quinolonas/síntesis química , Quinolonas/farmacología , Repeticiones WD40/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Cromatina/efectos de los fármacos , Cromatina/genética , Cristalografía por Rayos X , Diseño de Fármacos , Descubrimiento de Drogas , Represión Epigenética/efectos de los fármacos , Genes myc/efectos de los fármacos , Humanos , Relación Estructura-Actividad
12.
J Med Chem ; 62(8): 3971-3988, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-30929420

RESUMEN

Overexpression of myeloid cell leukemia-1 (Mcl-1) in cancers correlates with high tumor grade and poor survival. Additionally, Mcl-1 drives intrinsic and acquired resistance to many cancer therapeutics, including B cell lymphoma 2 family inhibitors, proteasome inhibitors, and antitubulins. Therefore, Mcl-1 inhibition could serve as a strategy to target cancers that require Mcl-1 to evade apoptosis. Herein, we describe the use of structure-based design to discover a novel compound (42) that robustly and specifically inhibits Mcl-1 in cell culture and animal xenograft models. Compound 42 binds to Mcl-1 with picomolar affinity and inhibited growth of Mcl-1-dependent tumor cell lines in the nanomolar range. Compound 42 also inhibited the growth of hematological and triple negative breast cancer xenografts at well-tolerated doses. These findings highlight the use of structure-based design to identify small molecule Mcl-1 inhibitors and support the use of 42 as a potential treatment strategy to block Mcl-1 activity and induce apoptosis in Mcl-1-dependent cancers.


Asunto(s)
Antineoplásicos/química , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Azepinas/química , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Simulación de Dinámica Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Estructura Terciaria de Proteína , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
13.
ACS Med Chem Lett ; 9(11): 1075-1081, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30429948

RESUMEN

Optimization of the side-chain of a phenyl indole scaffold identified from a high-throughput screening campaign for inhibitors of the AAA+ ATPase p97 is reported. The addition of an N-alkyl piperazine led to high potency of this series in a biochemical assay, activity in cell-based assays, and excellent pharmaceutical properties. Molecular modeling based on a subsequently obtained cryo-EM structure of p97 in complex with a phenyl indole was used to rationalize the potency of these allosteric inhibitors.

14.
J Med Chem ; 60(22): 9184-9204, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29120638

RESUMEN

We report the discovery and medicinal chemistry optimization of a novel series of pyrazole-based inhibitors of human lactate dehydrogenase (LDH). Utilization of a quantitative high-throughput screening paradigm facilitated hit identification, while structure-based design and multiparameter optimization enabled the development of compounds with potent enzymatic and cell-based inhibition of LDH enzymatic activity. Lead compounds such as 63 exhibit low nM inhibition of both LDHA and LDHB, submicromolar inhibition of lactate production, and inhibition of glycolysis in MiaPaCa2 pancreatic cancer and A673 sarcoma cells. Moreover, robust target engagement of LDHA by lead compounds was demonstrated using the cellular thermal shift assay (CETSA), and drug-target residence time was determined via SPR. Analysis of these data suggests that drug-target residence time (off-rate) may be an important attribute to consider for obtaining potent cell-based inhibition of this cancer metabolism target.


Asunto(s)
Inhibidores Enzimáticos/farmacología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Pirazoles/farmacología , Tiazoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Membranas Artificiales , Ratones , Microsomas Hepáticos/efectos de los fármacos , Permeabilidad , Pirazoles/síntesis química , Pirazoles/química , Pirazoles/farmacocinética , Ratas , Solubilidad , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química , Tiazoles/farmacocinética
15.
ACS Med Chem Lett ; 7(2): 182-7, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26985295

RESUMEN

A high-throughput screen to discover inhibitors of p97 ATPase activity identified an indole amide that bound to an allosteric site of the protein. Medicinal chemistry optimization led to improvements in potency and solubility. Indole amide 3 represents a novel uncompetitive inhibitor with excellent physical and pharmaceutical properties that can be used as a starting point for drug discovery efforts.

16.
Methods ; 96: 27-32, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26476368

RESUMEN

High content screening (HCS) experiments create a classic data management challenge-multiple, large sets of heterogeneous structured and unstructured data, that must be integrated and linked to produce a set of "final" results. These different data include images, reagents, protocols, analytic output, and phenotypes, all of which must be stored, linked and made accessible for users, scientists, collaborators and where appropriate the wider community. The OME Consortium has built several open source tools for managing, linking and sharing these different types of data. The OME Data Model is a metadata specification that supports the image data and metadata recorded in HCS experiments. Bio-Formats is a Java library that reads recorded image data and metadata and includes support for several HCS screening systems. OMERO is an enterprise data management application that integrates image data, experimental and analytic metadata and makes them accessible for visualization, mining, sharing and downstream analysis. We discuss how Bio-Formats and OMERO handle these different data types, and how they can be used to integrate, link and share HCS experiments in facilities and public data repositories. OME specifications and software are open source and are available at https://www.openmicroscopy.org.


Asunto(s)
Biología Computacional/estadística & datos numéricos , Minería de Datos/estadística & datos numéricos , Ensayos Analíticos de Alto Rendimiento/estadística & datos numéricos , Almacenamiento y Recuperación de la Información/estadística & datos numéricos , Programas Informáticos , Biología Computacional/métodos , Conjuntos de Datos como Asunto , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Difusión de la Información , Almacenamiento y Recuperación de la Información/métodos , Internet
17.
ACS Med Chem Lett ; 6(12): 1225-30, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26713109

RESUMEN

Exploratory SAR studies of a new phenyl indole chemotype for p97 inhibition revealed C-5 indole substituent effects in the ADPGlo assay that did not fully correlate with either electronic or steric factors. A focused series of methoxy-, trifluoromethoxy-, methyl-, trifluoromethyl-, pentafluorosulfanyl-, and nitro-analogues was found to exhibit IC50s from low nanomolar to double-digit micromolar. Surprisingly, we found that the trifluoromethoxy-analogue was biochemically a better match of the trifluoromethyl-substituted lead structure than a pentafluorosulfanyl-analogue. Moreover, in spite of their almost equivalent strongly electron-depleting effect on the indole core, pentafluorosulfanyl- and nitro-derivatives were found to exhibit a 430-fold difference in p97 inhibitory activities. Conversely, the electronically divergent C-5 methyl- and nitro-analogues both showed low nanomolar activities.

18.
Mamm Genome ; 26(9-10): 441-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26223880

RESUMEN

Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMERO's Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org.


Asunto(s)
Difusión de la Información , Imagen Molecular , Programas Informáticos , Animales , Internet , Edición
19.
J Struct Biol ; 184(2): 173-81, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24113529

RESUMEN

The Protein Data Bank in Europe (PDBe) has developed web-based tools for the visualisation and analysis of 3D electron microscopy (3DEM) structures in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB). The tools include: (1) a volume viewer for 3D visualisation of maps, tomograms and models, (2) a slice viewer for inspecting 2D slices of tomographic reconstructions, and (3) visual analysis pages to facilitate analysis and validation of maps, tomograms and models. These tools were designed to help non-experts and experts alike to get some insight into the content and assess the quality of 3DEM structures in EMDB and PDB without the need to install specialised software or to download large amounts of data from these archives. The technical challenges encountered in developing these tools, as well as the more general considerations when making archived data available to the user community through a web interface, are discussed.


Asunto(s)
Bases de Datos de Proteínas , Programas Informáticos , Tomografía con Microscopio Electrónico , Imagenología Tridimensional , Internet , Modelos Moleculares , Estructura Cuaternaria de Proteína , Proteínas/química , Proteínas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA