Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Psychopharmacology (Berl) ; 240(3): 575-594, 2023 Mar.
Article En | MEDLINE | ID: mdl-36464693

RATIONALE AND OBJECTIVES: The prefrontal cortex is critical for execution and inhibition of reward seeking. Neural manipulation of rodent medial prefrontal cortex (mPFC) subregions differentially impacts execution and inhibition of cocaine seeking. Dorsal, or prelimbic (PL), and ventral, or infralimbic (IL) mPFC are implicated in cocaine seeking or extinction of cocaine seeking, respectively. This differentiation is not seen across all studies, indicating that further research is needed to understand specific mPFC contributions to drug seeking. METHODS: We recorded neuronal activity in mPFC subregions during cocaine self-administration, extinction, and cue- and cocaine-induced reinstatement of cocaine seeking. RESULTS: Both PL and IL neurons were phasically responsive around lever presses during cocaine self-administration, and activity in both areas was reduced during extinction. During both cue- and, to a greater extent, cocaine-induced reinstatement, PL neurons exhibited significantly elevated responses, in line with previous studies demonstrating a role for the region in relapse. The enhanced PL signaling in cocaine-induced reinstatement was driven by strong excitation and inhibition in different groups of neurons. Both of these response types were stronger in PL vs. IL neurons. Finally, we observed tonic changes in activity in all tasks phases, reflecting both session-long contextual modulation as well as minute-to-minute activity changes that were highly correlated with brain cocaine levels and motivation associated with cocaine seeking. CONCLUSIONS: Although some differences were observed between PL and IL neuron activity across sessions, we found no evidence of a go/stop dichotomy in PL/IL function. Instead, our results demonstrate temporally heterogeneous prefrontal signaling during cocaine seeking and extinction in both PL and IL, revealing novel and complex functions for both regions during these behaviors. This combination of findings argues that mPFC neurons, in both PL and IL, provide multifaceted contributions to the regulation of drug seeking and addiction.


Cocaine , Cocaine/pharmacology , Cues , Prefrontal Cortex/physiology , Neurons , Reward , Extinction, Psychological/physiology , Drug-Seeking Behavior/physiology , Self Administration
2.
Int Rev Neurobiol ; 158: 57-82, 2021.
Article En | MEDLINE | ID: mdl-33785156

The rodent medial prefrontal cortex (mPFC) plays a key role in regulating cognition, emotion, and behavior. mPFC neurons are activated in diverse experimental paradigms, raising the questions of whether there are specific task elements or dimensions encoded by mPFC neurons, and whether these encoded parameters are selective to neurons in particular mPFC subregions or networks. Here, we consider the role of mPFC neurons in processing appetitive and aversive cues, outcomes, and related behaviors. mPFC neurons are strongly activated in tasks probing value and outcome-associated actions, but these responses vary across experimental paradigms. Can we identify specific categories of responses (e.g., positive or negative value), or do mPFC neurons exhibit response properties that are too heterogeneous/complex to cluster into distinct conceptual groups? Based on a review of relevant studies, we consider what has been done and what needs to be further explored in order to address these questions.


Neurons , Prefrontal Cortex , Animals , Neurons/physiology , Prefrontal Cortex/physiology
3.
Alcohol Clin Exp Res ; 44(9): 1769-1782, 2020 09.
Article En | MEDLINE | ID: mdl-32628778

BACKGROUND: The orbitofrontal cortex (OFC) encodes internal representations of outcomes and subjective value to facilitate flexible reward seeking. OFC activation is associated with drug seeking in both human subjects and animal models. OFC plays a role in alcohol use, but studies in animal models have produced conflicting results with some showing decreased seeking after OFC inactivation but others showing increased seeking or no changes. In part, this may be due to the different measures of alcohol seeking used (e.g., homecage drinking vs. operant seeking). METHODS: We characterized the impact of transient inactivation of OFC (primarily lateral and, to a lesser extent, ventral subregions) using inhibitory hM4Di designer receptors exclusively activated by designer drugs (DREADDs). OFC neurons were transiently inhibited during 10% and 20% alcohol (ethanol, EtOH) and sucrose homecage consumption, fixed ratio (FR1) operant self-administration, and cue-induced reinstatement of either 10% EtOH or sucrose in male and female rats. RESULTS: OFC inactivation did not affect sucrose or EtOH consumption in the homecage, nor did it influence seeking or consumption under FR1 operant conditions. In contrast, OFC inactivation suppressed cued-induced reinstatement for both EtOH and sucrose in both male and female rats. CONCLUSIONS: Our results are aligned with previous work indicating a selective suppressive effect of OFC inactivation on reinstatement for alcohol and other drugs of abuse. They extend these findings to demonstrate no effect on homecage consumption or FR1 seeking as well as showing an impact of sucrose reinstatement. These data indicate that OFC plays a uniquely important role when reward seeking is driven by associations between external stimuli and internal representations of reward value, both for natural and drug rewards. They further implicate the OFC as a key structure driving relapse-associated seeking and potentially contributing to alcohol use disorder and other diseases of compulsive reward seeking.


Central Nervous System Depressants/administration & dosage , Conditioning, Operant/physiology , Cues , Drug-Seeking Behavior/physiology , Ethanol/administration & dosage , Prefrontal Cortex/physiology , Sucrose/administration & dosage , Sweetening Agents/administration & dosage , Animals , Extinction, Psychological/physiology , Female , Male , Rats , Self Administration
4.
eNeuro ; 7(4)2020.
Article En | MEDLINE | ID: mdl-32661066

Orbitofrontal cortex (OFC) plays a key role in representation and regulation of reward value, preference, and seeking. OFC function is disrupted in drug use and dependence, but its specific role in alcohol use disorders has not been thoroughly studied. In alcohol-dependent humans OFC activity is increased by alcohol cue presentation. Ethanol (EtOH) also alters OFC neuron excitability in vitro, and OFC manipulation influences EtOH seeking and drinking in rodents. To understand the relationship between OFC function and individual alcohol use, we recorded OFC neuron activity in rats during EtOH self-administration, characterizing the neural correlates of individual preference for alcohol. After one month of intermittent access to 20% EtOH, male Long-Evans rats were trained to self-administer 20% EtOH, 10% EtOH, and 15% sucrose. OFC neuronal activity was recorded and associated with task performance and EtOH preference. Rats segregated into high and low EtOH drinkers based on homecage consumption and operant seeking of 20% EtOH. Motivation for 10% EtOH and sucrose was equally high in both groups. OFC neuronal activity was robustly increased or decreased during sucrose and EtOH seeking and consumption, and strength of changes in OFC activity was directly associated with individual preference for 20% EtOH. EtOH-associated OFC activity was more similar to sucrose-associated activity in high versus low EtOH drinkers. The results show that OFC neurons are activated during alcohol seeking based on individual preference, supporting this brain region as a potential substrate for alcohol motivation that may be dysregulated in alcohol misuse.


Alcoholism , Alcohol Drinking , Animals , Conditioning, Operant , Ethanol , Male , Prefrontal Cortex , Rats , Rats, Long-Evans , Self Administration
5.
Psychopharmacology (Berl) ; 237(10): 3021-3031, 2020 Oct.
Article En | MEDLINE | ID: mdl-32588079

RATIONALE: Stress plays a major role in the development of alcohol use disorder (AUD)-a history of chronic stress contributes to alcohol misuse, and withdrawal from alcohol elevates stress, perpetuating cycles of problematic drinking. Recent studies have shown that, in male mice, repeated chronic intermittent ethanol (CIE) and stress elevates alcohol use above either manipulation alone and impacts cognitive functions such as behavioral flexibility. OBJECTIVE: Here, we investigated the impact of CIE and stress on anxiety in both sexes, and whether the norepinephrine (NE) system via locus coeruleus, which is implicated in both stress and alcohol motivation, is involved. RESULTS: Male and female mice received multiple cycles of CIE and/or repeated forced swim stress (FSS), producing elevated drinking in both sexes. CIE/FSS treatment increased anxiety, which was blocked by treatment with the α1-AR inverse agonist prazosin. In contrast, administration of the corticotropin releasing factor receptor antagonist CP376395 into locus coeruleus did not reduce CIE/FSS-elevated anxiety. We also observed sex differences in behavioral responses to a history of CIE or FSS alone as well as differential behavioral consequences of prazosin treatment. CONCLUSIONS: These data indicate that NE contributes to the development of anxiety following a history of alcohol and/or stress, and that the influence of both treatment history and NE signaling is sex dependent. These results argue for further investigation of the NE system in relation to disrupted behavior following chronic alcohol and stress, and support the assertion that treatments may differ across sex based on differential neural system engagement.


Alcohol Drinking/metabolism , Alcohol Drinking/psychology , Anxiety/metabolism , Anxiety/psychology , Ethanol/administration & dosage , Norepinephrine/metabolism , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Animals , Female , Locus Coeruleus/drug effects , Locus Coeruleus/metabolism , Male , Mice , Norepinephrine/antagonists & inhibitors , Prazosin/pharmacology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Sex Characteristics
6.
Neuropharmacology ; 168: 108007, 2020 05 15.
Article En | MEDLINE | ID: mdl-32092436

The orbitofrontal cortex (OFC) plays a fundamental role in motivated behavior and decision-making. In humans, OFC structure and function is significantly disrupted in drug using and dependent individuals, including those exhibiting chronic alcohol use and alcoholism. In animal models, the OFC has been shown to significantly influence the seeking of non-alcohol drugs of abuse. However direct investigations of the OFC during alcohol seeking and use have been more limited. In the studies reported here, we inactivated lateral (lOFC) or medial OFC (mOFC) subregions in rats during multiple stages of alcohol seeking. After one month of intermittent access to homecage 20% ethanol (EtOH), rats were trained to self-administer EtOH under an FR3 schedule and implanted with cannulae directed to lOFC or mOFC. We inactivated OFC subregions with baclofen/muscimol during EtOH self-administration, extinction, cue-induced reinstatement, and progressive ratio testing to broadly characterize the influence of these subregions on alcohol seeking. There were no significant effects of mOFC or lOFC inactivation during FR3 self-administration, extinction, or progressive ratio self-administration. However, lOFC, and not mOFC, inactivation significantly decreased cue-induced reinstatement of EtOH seeking. These findings contribute new information to the specific impact of OFC manipulation on operant alcohol seeking, support previous studies investigating the role of OFC in seeking and consumption of alcohol and other drugs of abuse, and indicate a specific role for lOFC vs. mOFC in reinstatement.


Alcohol Drinking/metabolism , Behavior, Addictive/metabolism , Ethanol/administration & dosage , GABA Agonists/administration & dosage , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Alcohol Drinking/psychology , Animals , Behavior, Addictive/chemically induced , Behavior, Addictive/psychology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Injections, Intravenous , Male , Rats , Rats, Long-Evans , Self Administration
7.
eNeuro ; 6(5)2019.
Article En | MEDLINE | ID: mdl-31519696

Rodent dorsal medial prefrontal cortex (mPFC), typically prelimbic cortex, is often described as promoting actions such as reward seeking, whereas ventral mPFC, typically infralimbic cortex, is thought to promote response inhibition. However, both dorsal and ventral mPFC are necessary for both expression and suppression of different behaviors, and each region may contribute to different functions depending on the specifics of the behavior tested. To better understand the roles of dorsal and ventral mPFC in motivated behavior we pharmacologically inactivated each area during operant fixed ratio 1 (FR1) seeking for a natural reward (sucrose), extinction, cue-induced reinstatement, and progressive ratio (PR) sucrose seeking in male Long-Evans rats. Bilateral inactivation of dorsal mPFC, but not ventral mPFC increased reward seeking during FR1. Inactivation of both dorsal and ventral mPFC decreased seeking during extinction. Bilateral inactivation of ventral mPFC, but not dorsal mPFC decreased reward seeking during cue-induced reinstatement. No effect of inactivation was found during PR. Our data contrast sharply with observations seen during drug seeking and fear conditioning, indicating that previously established roles of dorsal mPFC = going versus ventral mPFC = stopping are not applicable to all motivated behaviors and/or outcomes. Our results indicate that dichotomous functions of dorsal versus ventral mPFC, if they exist, may align better with other models, or may require the development of a new framework in which these multifaceted brain areas play different roles in action control depending on the behavioral context in which they are engaged.


Behavior, Addictive/psychology , Cues , Extinction, Psychological/physiology , Prefrontal Cortex/physiology , Reward , Sucrose/administration & dosage , Animals , Behavior, Addictive/chemically induced , Extinction, Psychological/drug effects , GABA Agonists/pharmacology , Male , Prefrontal Cortex/drug effects , Rats, Long-Evans , Self Administration
8.
Proc Natl Acad Sci U S A ; 115(40): E9439-E9448, 2018 10 02.
Article En | MEDLINE | ID: mdl-30232259

Phasic activation of locus coeruleus (LC)-norepinephrine (NE) neurons is associated with focused attention and behavioral responses to salient stimuli. We used cell-type-specific optogenetics and single-unit neurophysiology to identify how LC activity influences neural encoding of sensory information. We found that phasic, but not tonic, LC-NE photoactivation generated a distinct event-related potential (ERP) across cortical regions. Salient sensory stimuli (which innately trigger phasic LC activity) produced strong excitatory cortical responses during this ERP window. Application of weaker, nonsalient stimuli produced limited responses, but these responses were elevated to salient stimulus levels when they were temporally locked with phasic LC photoactivation. These results demonstrate that phasic LC activity enhances cortical encoding of salient stimuli by facilitating long-latency signals within target regions in response to stimulus intensity/salience. The LC-driven salience signal identified here provides a measure of phasic LC activity that can be used to investigate the LC's role in attentional processing across species.


Evoked Potentials/physiology , Locus Coeruleus/physiology , Neurons/metabolism , Animals , Locus Coeruleus/cytology , Male , Neurons/cytology , Optogenetics , Rats , Rats, Long-Evans
9.
Handb Exp Pharmacol ; 248: 239-260, 2018.
Article En | MEDLINE | ID: mdl-29687164

Alcohol use disorder (AUD) results from disruption of a number of neural systems underlying motivation, emotion, and cognition. Patients with AUD exhibit not only elevated motivation for alcohol but heightened stress and anxiety, and disruptions in cognitive domains such as decision-making. One system at the intersection of these functions is the central norepinephrine (NE) system. This catecholaminergic neuromodulator, produced by several brainstem nuclei, plays profound roles in a wide range of behaviors and functions, including arousal, attention, and other aspects of cognition, motivation, emotional regulation, and control over basic physiological processes. It has been known for some time that NE has an impact on alcohol seeking and use, but the mechanisms of its influence are still being revealed. This chapter will discuss the influence of NE neuron activation and NE release at alcohol-relevant targets on behaviors and disruptions underlying alcohol motivation and AUD. Potential NE-based pharmacotherapies for AUD treatment will also be discussed. Given the basic properties of NE function, the strong relationship between NE and alcohol use, and the effectiveness of current NE-related treatments, the studies presented here indicate an encouraging direction for the development of precise and efficacious future therapies for AUD.


Alcoholism , Ethanol/pharmacology , Neurons/drug effects , Norepinephrine/physiology , Humans
10.
Psychopharmacology (Berl) ; 235(6): 1663-1680, 2018 06.
Article En | MEDLINE | ID: mdl-29508004

The hypocretin/orexin (ORX) system has been repeatedly demonstrated to regulate motivation for drugs of abuse, including alcohol. In particular, ORX seems to be critically involved in highly motivated behaviors, as is observed in high-seeking individuals in a population, in the seeking of highly palatable substances, and in models of dependence. It seems logical that this system could be considered as a potential target for treatment for addiction, particularly alcohol addiction, as ORX pharmacological manipulations significantly reduce drinking. However, the ORX system also plays a role in a wide range of other behaviors, emotions, and physiological functions and is disrupted in a number of non-dependence-associated disorders. It is therefore important to consider how the ORX system might be optimally targeted for potential treatment for alcohol use disorders either in combination with or separate from its role in other functions or diseases. This review will focus on the role of ORX in alcohol-associated behaviors and whether and how this system could be targeted to treat alcohol use disorders while avoiding impacts on other ORX-relevant functions. A brief overview of the ORX system will be followed by a discussion of some of the factors that makes it particularly intriguing as a target for alcohol addiction treatment, a consideration of some potential challenges associated with targeting this system and, finally, some future directions to optimize new treatments.


Alcoholism/metabolism , Drug Delivery Systems/methods , Motivation/drug effects , Orexins/metabolism , Alcohol Drinking/drug therapy , Alcohol Drinking/metabolism , Alcohol Drinking/psychology , Alcoholism/drug therapy , Alcoholism/psychology , Animals , Behavior, Addictive/drug therapy , Behavior, Addictive/metabolism , Behavior, Addictive/psychology , Humans , Motivation/physiology , Orexins/administration & dosage , Orexins/antagonists & inhibitors
11.
Handb Exp Pharmacol ; 248: 473-503, 2018.
Article En | MEDLINE | ID: mdl-29526023

Understanding the neural systems that drive alcohol motivation and are disrupted in alcohol use disorders is of critical importance in developing novel treatments. The dynorphin and orexin/hypocretin neuropeptide systems are particularly relevant with respect to alcohol use and misuse. Both systems are strongly associated with alcohol-seeking behaviors, particularly in cases of high levels of alcohol use as seen in dependence. Furthermore, both systems also play a role in stress and anxiety, indicating that disruption of these systems may underlie long-term homeostatic dysregulation seen in alcohol use disorders. These systems are also closely interrelated with one another - dynorphin/kappa opioid receptors and orexin/hypocretin receptors are found in similar regions and hypocretin/orexin neurons also express dynorphin - suggesting that these two systems may work together in the regulation of alcohol seeking and may be mutually disrupted in alcohol use disorders. This chapter reviews studies demonstrating a role for each of these systems in motivated behavior, with a focus on their roles in regulating alcohol-seeking and self-administration behaviors. Consideration is also given to evidence indicating that these neuropeptide systems may be viable targets for the development of potential treatments for alcohol use disorders.


Alcoholism , Dynorphins/physiology , Ethanol/pharmacology , Motivation , Orexins/physiology , Humans
12.
Prog Neuropsychopharmacol Biol Psychiatry ; 87(Pt A): 85-107, 2018 12 20.
Article En | MEDLINE | ID: mdl-29355587

One of the major functions of the orbitofrontal cortex (OFC) is to promote flexible motivated behavior. It is no surprise, therefore, that recent work has demonstrated a prominent impact of chronic drug use on the OFC and a potential role for OFC disruption in drug abuse and addiction. Among drugs of abuse, the use of alcohol is particularly salient with respect to OFC function. Although a number of studies in humans have implicated OFC dysregulation in alcohol use disorders, animal models investigating the association between OFC and alcohol use are only beginning to be developed, and there is still a great deal to be revealed. The goal of this review is to consider what is currently known regarding the role of the OFC in alcohol use and dependence. I will first provide a brief, general overview of current views of OFC function and its contributions to drug seeking and addiction. I will then discuss research to date related to the OFC and alcohol use, both in human clinical populations and in non-human models. Finally I will consider issues and strategies to guide future study that may identify this brain region as a key player in the transition from moderated to problematic alcohol use and dependence.


Alcoholism/physiopathology , Behavior, Addictive/physiopathology , Drug-Seeking Behavior , Prefrontal Cortex/physiology , Animals , Humans , Prefrontal Cortex/drug effects
13.
eNeuro ; 5(6)2018.
Article En | MEDLINE | ID: mdl-30627636

Decision making often requires weighing costs and benefits of different options that vary in terms of reward magnitude and uncertainty. Previous studies using pharmacological inactivations have shown that the basolateral amygdala (BLA) to nucleus accumbens (NAc) pathway promotes choice towards larger/riskier rewards. Neural activity in BLA and NAc shows distinct, phasic changes in firing prior to choice and following action outcomes, yet, how these temporally-discrete patterns of activity within BLA→NAc circuitry influence choice is unclear. We assessed how optogenetic silencing of BLA terminals in the NAc altered action selection during probabilistic decision making. Rats received intra-BLA infusions of viruses encoding the inhibitory opsin eArchT and were well trained on a probabilistic discounting task, where they chose between smaller/certain rewards and larger rewards delivered in a probabilistic manner, with the odds of obtaining the larger reward changing over a session (50-12.5%). During testing, activity of BLA→NAc inputs were suppressed with 4- to 7-s pulses of light delivered via optic fibers into the NAc during discrete task events: prior to choice or after choice outcomes. Inhibition prior to choice reduced selection of the preferred option, suggesting that during deliberation, BLA→NAc activity biases choice towards preferred rewards. Inhibition during reward omissions increased risky choice during the low-probability block, indicating that activity after non-rewarded actions serves to modify subsequent choice. In contrast, silencing during rewarded outcomes did not reliably affect choice. These data demonstrate how patterns of activity in BLA→NAc circuitry convey different types of information that guide action selection in situations involving reward uncertainty.


Basolateral Nuclear Complex/physiology , Decision Making/physiology , Nucleus Accumbens/physiology , Optogenetics , Reward , Risk-Taking , Action Potentials/physiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Basolateral Nuclear Complex/cytology , Conditioning, Operant , Delay Discounting , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Inhibition, Psychological , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Neural Pathways/physiology , Neurons/physiology , Nucleus Accumbens/cytology , Photic Stimulation , Probability , Rats , Rats, Long-Evans , Transduction, Genetic
14.
Alcohol Clin Exp Res ; 41(9): 1574-1583, 2017 Sep.
Article En | MEDLINE | ID: mdl-28753742

BACKGROUND: Chronic exposure to stress or alcohol can drive neuroadaptations that alter cognition. Alterations in cognition may contribute to alcohol use disorders by reducing cognitive control over drinking and maintenance of abstinence. Here we examined effects of combined ethanol (EtOH) and stress exposure on prefrontal cortex (PFC)-dependent cognition. METHODS: Adult male C57BL/6J mice were trained to drink EtOH (15%, v/v) on a 1 h/d 1-bottle schedule. Once stable, mice were exposed to cycles of chronic intermittent EtOH (CIE) or air-control vapor exposure (Air), followed by test cycles of 1 h/d EtOH drinking. During test drinking, mice received no stress (NS) or 10 minutes of forced swim stress (FSS) 4 hours before each test. This schedule produced 4 experimental groups: control, Air/NS; EtOH-dependent no stress, CIE/NS; nondependent stress, Air/FSS; or EtOH-dependent stress, CIE/FSS. After 2 cycles of CIE and FSS exposure, we assessed PFC-dependent cognition using object/context recognition and attentional set shifting. At the end of the study, mice were perfused and brains were collected for measurement of c-Fos activity in PFC and locus coeruleus (LC). RESULTS: CIE/FSS mice escalated EtOH intake faster than CIE/NS and consumed more EtOH than Air/NS across all test cycles. After 2 cycles of CIE/FSS, mice showed impairments in contextual learning and extradimensional set-shifting relative to other groups. In addition to cognitive dysfunction, CIE/FSS mice demonstrated widespread reductions in c-Fos activity within prelimbic and infralimbic PFC as well as LC. CONCLUSIONS: Together, these findings show that interactions between EtOH and stress exposure rapidly lead to disruptions in signaling across cognitive networks and impairments in PFC-dependent cognitive function.


Alcoholism/psychology , Central Nervous System Depressants/toxicity , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/psychology , Ethanol/toxicity , Stress, Psychological/psychology , Animals , Attention/drug effects , Cognitive Dysfunction/complications , Genes, fos/genetics , Learning/drug effects , Limbic System/drug effects , Limbic System/physiopathology , Male , Mice , Mice, Inbred C57BL , Prefrontal Cortex/physiopathology , Stress, Psychological/complications , Swimming/psychology
15.
Curr Top Behav Neurosci ; 33: 247-281, 2017.
Article En | MEDLINE | ID: mdl-28012090

One decade ago, our laboratory provided the first direct evidence linking orexin/hypocretin signaling with drug seeking by showing that activation of these neurons promotes conditioned morphine-seeking behavior. In the years since, contributions from many investigators have revealed roles for orexins in addiction for all drugs of abuse tested, but only under select circumstances. We recently proposed that orexins play a fundamentally unified role in coordinating "motivational activation" under numerous behavioral conditions, and here we unpack this hypothesis as it applies to drug addiction. We describe evidence collected over the past 10 years that elaborates the role of orexin in drug seeking under circumstances where high levels of effort are required to obtain the drug, or when motivation for drug reward is augmented by the presence of external stimuli like drug-associated cues/contexts or stressors. Evidence from studies using traditional self-administration and reinstatement models, as well as behavioral economic analyses of drug demand elasticity, clearly delineates a role for orexin in modulating motivational, rather than the primary reinforcing aspects of drug reward. We also discuss the anatomical interconnectedness of the orexin system with wider motivation and reward circuits, with a particular focus on how orexin modulates prefrontal and other glutamatergic inputs onto ventral tegmental area dopamine neurons. Last, we look ahead to the next decade of the research in this area, highlighting the recent FDA approval of the dual orexin receptor antagonist suvorexant (Belsomra®) for the treatment of insomnia as a promising sign of the potential clinical utility of orexin-based therapies for the treatment of addiction.


Behavior, Addictive/metabolism , Orexins/metabolism , Animals , Humans
16.
Brain Res ; 1654(Pt A): 34-42, 2017 Jan 01.
Article En | MEDLINE | ID: mdl-27771284

The orexin/hypocretin (ORX) system regulates motivation for natural rewards and drugs of abuse such as alcohol. ORX receptor antagonists, most commonly OX1R antagonists including SB-334867 (SB), decrease alcohol drinking, self-administration and reinstatement in both genetically-bred alcohol-preferring and outbred strains of rats. Importantly, levels of alcohol seeking and drinking in outbred rats are variable, as they are in humans. We have shown that OX1R antagonism selectively decreases homecage alcohol drinking in high-, but not low-alcohol-preferring rats. It is unknown, however, whether this effect is selective to homecage drinking or whether it also applies to alcohol seeking paradigms such as self-administration and reinstatement following extinction, in which motivation is high in the absence of alcohol. Here we trained Sprague Dawley rats to self-administer 20% ethanol paired with a light-tone cue on an FR3 regimen. Rats were then extinguished and subjected to cue-induced reinstatement. Rats were segregated into high- and low-ethanol-responding groups (HR and LR) based on self-administration levels. During self-administration and cue-induced reinstatement, rats were given SB or vehicle prior to ethanol seeking. In both conditions, OX1R antagonism decreased responding selectively in HR, but not LR rats. There were no non-specific effects of SB treatment on arousal or general behavior. These data indicate that ORX signaling at the OX1R receptor specifically regulates high levels of motivation for alcohol, even in the absence of direct alcohol reinforcement. This implicates the ORX system in the pathological motivation underlying alcohol abuse and alcoholism and demonstrates that the OX1R may be an important target for treating alcohol abuse.


Alcohol Drinking/drug therapy , Benzoxazoles/pharmacology , Central Nervous System Depressants/administration & dosage , Drug-Seeking Behavior/drug effects , Ethanol/administration & dosage , Orexin Receptor Antagonists/pharmacology , Urea/analogs & derivatives , Alcohol Drinking/metabolism , Alcohol-Related Disorders/drug therapy , Alcohol-Related Disorders/metabolism , Animals , Animals, Outbred Strains , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Cues , Disease Models, Animal , Drug-Seeking Behavior/physiology , Male , Motivation/drug effects , Motivation/physiology , Naphthyridines , Orexin Receptors/metabolism , Rats, Sprague-Dawley , Self Administration , Urea/pharmacology
17.
J Am Stat Assoc ; 111(514): 459-471, 2016.
Article En | MEDLINE | ID: mdl-27990034

The goal of this paper is to develop a novel statistical model for studying cross-neuronal spike train interactions during decision making. For an individual to successfully complete the task of decision-making, a number of temporally-organized events must occur: stimuli must be detected, potential outcomes must be evaluated, behaviors must be executed or inhibited, and outcomes (such as reward or no-reward) must be experienced. Due to the complexity of this process, it is likely the case that decision-making is encoded by the temporally-precise interactions between large populations of neurons. Most existing statistical models, however, are inadequate for analyzing such a phenomenon because they provide only an aggregated measure of interactions over time. To address this considerable limitation, we propose a dynamic Bayesian model which captures the time-varying nature of neuronal activity (such as the time-varying strength of the interactions between neurons). The proposed method yielded results that reveal new insight into the dynamic nature of population coding in the prefrontal cortex during decision making. In our analysis, we note that while some neurons in the prefrontal cortex do not synchronize their firing activity until the presence of a reward, a different set of neurons synchronize their activity shortly after stimulus onset. These differentially synchronizing sub-populations of neurons suggests a continuum of population representation of the reward-seeking task. Secondly, our analyses also suggest that the degree of synchronization differs between the rewarded and non-rewarded conditions. Moreover, the proposed model is scalable to handle data on many simultaneously-recorded neurons and is applicable to analyzing other types of multivariate time series data with latent structure. Supplementary materials (including computer codes) for our paper are available online.

18.
Brain Res ; 1636: 74-80, 2016 Apr 01.
Article En | MEDLINE | ID: mdl-26851547

The orexin/hypocretin (ORX) system plays a major role in motivation for natural and drug rewards. In particular, a number of studies have shown that ORX signaling through the orexin 1 receptor (OX1R) regulates alcohol seeking and consumption. Despite the association between ORX signaling and motivation for alcohol, no study to date has investigated what role the ORX system plays in alcohol dependence, an understanding of which would have significant clinical relevance. This study was designed to evaluate the effect of the highly selective OX1R antagonist GSK1059865 on voluntary ethanol intake in ethanol-dependent and control non-dependent mice. Mice were subjected to a protocol in which they were evaluated for baseline ethanol intake and then exposed to intermittent ethanol or air exposure in inhalation chambers. Each cycle of chronic intermittent ethanol (CIE), or air, exposure was followed by a test of ethanol intake. Once the expected effect of increased voluntary ethanol intake was obtained in ethanol dependent mice, mice were tested for the effect of GSK1059865 on ethanol and sucrose intake. Treatment with GSK1059865 significantly decreased ethanol drinking in a dose-dependent manner in CIE-exposed mice. In contrast GSK1059865 decreased drinking in air-exposed mice only at the highest dose used. There was no effect of GSK1059865 on sucrose intake. Thus, ORX signaling through the OX1R, using a highly-selective antagonist, has a profound influence on high levels of alcohol drinking induced in a dependence paradigm, but limited or no influence on moderate alcohol drinking or sucrose drinking. These results indicate that the ORX system may be an important target system for treating disorders of compulsive reward seeking such as alcoholism and other addictions in which motivation is strongly elevated.


Alcohol Drinking/drug therapy , Aminopyridines/therapeutic use , Drinking Behavior/drug effects , Ethanol/administration & dosage , Orexin Receptor Antagonists/therapeutic use , Piperidines/therapeutic use , Analysis of Variance , Animals , Dose-Response Relationship, Drug , Ethanol/blood , Male , Mice , Mice, Inbred C57BL , Sucrose/administration & dosage
19.
Eur J Neurosci ; 43(5): 710-20, 2016 Mar.
Article En | MEDLINE | ID: mdl-26750264

Orexin (ORX) (also known as hypocretin) neurons are located exclusively in the posterior hypothalamus, and are involved in a wide range of behaviours, including motivation for drugs of abuse such as alcohol. Hypothalamic subregions contain functionally distinct populations of ORX neurons that may play different roles in regulating drug-motivated and alcohol-motivated behaviours. To investigate the role of ORX neurons in ethanol (EtOH) seeking, we measured Fos activation of ORX neurons in rats following three different measures of EtOH seeking and preference: (i) context-induced reinstatement, or ABA renewal; (ii) cue-induced reinstatement of extinguished responding for EtOH; and (iii) a home cage task in which preference for EtOH (vs. water) was measured in the absence of either reinforcer. We found significant activation of ORX neurons in multiple subregions across all three behavioural tests. Notably, ORX neuron activation in the lateral hypothalamus correlated with the degree of seeking in context reinstatement and the degree of preference in home cage preference testing. In addition, Fos activation in ORX neurons in the dorsomedial hypothalamic and perifornical areas was correlated with context and home cage seeking/preference, respectively. Surprisingly, we found no relationship between the degree of cue-induced reinstatement and ORX neuron activation in any region, despite robust activation overall during reinstatement. These results demonstrate a strong relationship between ORX neuron activation and EtOH seeking/preference, but one that is differentially expressed across ORX field subregions, depending on reinstatement modality.


Alcohol Drinking/physiopathology , Drug-Seeking Behavior , Neurons/metabolism , Orexins/metabolism , Alcohol Drinking/metabolism , Animals , Cues , Hypothalamus/cytology , Hypothalamus/metabolism , Hypothalamus/physiology , Male , Orexins/genetics , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Reinforcement, Psychology
20.
Proc Natl Acad Sci U S A ; 112(30): 9472-7, 2015 Jul 28.
Article En | MEDLINE | ID: mdl-26170333

The prefrontal cortex (PFC) guides execution and inhibition of behavior based on contextual demands. In rodents, the dorsal/prelimbic (PL) medial PFC (mPFC) is frequently considered essential for execution of goal-directed behavior ("go") whereas ventral/infralimbic (IL) mPFC is thought to control behavioral suppression ("stop"). This dichotomy is commonly seen for fear-related behaviors, and for some behaviors related to cocaine seeking. Overall, however, data for reward-directed behaviors are ambiguous, and few recordings of PL/IL activity have been performed to demonstrate single-neuron correlates. We recorded neuronal activity in PL and IL during discriminative stimulus driven sucrose seeking followed by multiple days of extinction of the reward-predicting stimulus. Contrary to a generalized PL-go/IL-stop hypothesis, we found cue-evoked activity in PL and IL during reward seeking and extinction. Upon analyzing this activity based on resultant behavior (lever press or withhold), we found that neurons in both areas encoded contextually appropriate behavioral initiation (during reward seeking) and withholding (during extinction), where context was dictated by response-outcome contingencies. Our results demonstrate that PL and IL signal contextual information for regulation of behavior, irrespective of whether that involves initiation or suppression of behavioral responses, rather than topographically encoding go vs. stop behaviors. The use of context to optimize behavior likely plays an important role in maximizing utility-promoting exertion of activity when behaviors are rewarded and conservation of energy when not.


Conditioning, Operant/physiology , Extinction, Psychological/physiology , Neurons/physiology , Prefrontal Cortex/physiology , Reward , Animals , Behavior, Animal , Cues , Electrodes , Electrophysiology , Limbic System/physiology , Male , Models, Neurological , Rats , Rats, Sprague-Dawley , Signal Transduction , Sucrose/chemistry
...