Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 1986: 255-266, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31115893

RESUMEN

In gene expression studies, missing values are a common problem with important consequences for the interpretation of the final data (Satija et al., Nat Biotechnol 33(5):495, 2015). Numerous bioinformatics examination tools are used for cancer prediction, including the data set matrix (Bailey et al., Cell 173(2):371-385, 2018); thus, it is necessary to resolve the problem of missing-values imputation. This chapter presents a review of the research on missing-values imputation approaches for gene expression data. By using local and global correlation of the data, we were able to focus mostly on the differences between the algorithms. We classified the algorithms as global, hybrid, local, or knowledge-based techniques. Additionally, this chapter presents suitable assessments of the different approaches. The purpose of this review is to focus on developments in the current techniques for scientists rather than applying different or newly developed algorithms with identical functional goals. The aim was to adapt the algorithms to the characteristics of the data.


Asunto(s)
Algoritmos , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Ontología de Genes , Reproducibilidad de los Resultados
2.
Bioinformation ; 7(3): 142-6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22125385

RESUMEN

A random forest method has been selected to perform both gene selection and classification of the microarray data. In this embedded method, the selection of smallest possible sets of genes with lowest error rates is the key factor in achieving highest classification accuracy. Hence, improved gene selection method using random forest has been proposed to obtain the smallest subset of genes as well as biggest subset of genes prior to classification. The option for biggest subset selection is done to assist researchers who intend to use the informative genes for further research. Enhanced random forest gene selection has performed better in terms of selecting the smallest subset as well as biggest subset of informative genes with lowest out of bag error rates through gene selection. Furthermore, the classification performed on the selected subset of genes using random forest has lead to lower prediction error rates compared to existing method and other similar available methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA