Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
In Vivo ; 36(1): 63-75, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34972701

RESUMEN

BACKGROUND/AIM: Cardiovascular diseases are one of the most common causes of morbidity and mortality in the world. In the case of severe arteriosclerotic damage, surgical treatment is necessary. Although the use of autologous vessels is still considered to be the gold standard, sufficient autologous vessels for transplantation are lacking. MATERIALS AND METHODS: In the present study, histological examination and in vitro cytotoxicity analysis according to DIN EN ISO 10993-5 were performed on a newly developed porcine vascular graft from a decellularized aorta. A conventional bovine graft was used as control. RESULTS: The ex vivo-histological analysis revealed the effectiveness of a new purification process on the microstructure and the removal of xenogeneic antigen-bearing structures in the new vessels. Furthermore, cell viability and cytotoxicity assays revealed full cytocompatibility. CONCLUSION: The novel graft shows no structural damage and gets completely decellularized by the purification process. Superior cytocompatibility, compared with the bovine-derived vascular graft, was demonstrated.


Asunto(s)
Aorta , Animales , Bovinos , Porcinos
2.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299243

RESUMEN

(1) Background: The aim of the present study was the biocompatibility analysis of a novel xenogeneic vascular graft material (PAP) based on native collagen won from porcine aorta using the subcutaneous implantation model up to 120 days post implantationem. As a control, an already commercially available collagen-based vessel graft (XenoSure®) based on bovine pericardium was used. Another focus was to analyze the (ultra-) structure and the purification effort. (2) Methods: Established methodologies such as the histological material analysis and the conduct of the subcutaneous implantation model in Wistar rats were applied. Moreover, established methods combining histological, immunohistochemical, and histomorphometrical procedures were applied to analyze the tissue reactions to the vessel graft materials, including the induction of pro- and anti-inflammatory macrophages to test the immune response. (3) Results: The results showed that the PAP implants induced a special cellular infiltration and host tissue integration based on its three different parts based on the different layers of the donor tissue. Thereby, these material parts induced a vascularization pattern that branches to all parts of the graft and altogether a balanced immune tissue reaction in contrast to the control material. (4) Conclusions: PAP implants seemed to be advantageous in many aspects: (i) cellular infiltration and host tissue integration, (ii) vascularization pattern that branches to all parts of the graft, and (iii) balanced immune tissue reaction that can result in less scar tissue and enhanced integrative healing patterns. Moreover, the unique trans-implant vascularization can provide unprecedented anti-infection properties that can avoid material-related bacterial infections.


Asunto(s)
Prótesis Vascular/veterinaria , Trasplante de Tejidos/métodos , Animales , Aorta/metabolismo , Aorta/trasplante , Materiales Biocompatibles/metabolismo , Bioprótesis , Bovinos , Colágeno/metabolismo , Xenoinjertos/metabolismo , Xenoinjertos/fisiología , Ratas , Ratas Wistar , Porcinos/metabolismo , Inmunología del Trasplante/inmunología , Cicatrización de Heridas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA