Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(2): 2792-2805, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34378128

RESUMEN

Pollution with trace metals (TM) has been shown to affect diversity and/or composition of plant and animal communities. While ecotoxicological studies have estimated the impact of TM contamination on plant and animal communities separately, ecological studies have widely demonstrated that vegetation is an important factor shaping invertebrate communities. It is supposed that changes in invertebrate communities under TM contamination would be explained by both direct impact of TM on invertebrate organisms and indirect effects due to changes in plant communities. However, no study has clearly investigated which would more importantly shape invertebrate communities under TM contamination. Here, we hypothesized that invertebrate communities under TM contamination would be affected more importantly by plant communities which constitute their habitat and/or food than by direct impact of TM. Our analysis showed that diversity and community identity of flying invertebrates were explained only by plant diversity which was not affected by TM contamination. Diversity of ground-dwelling (GD) invertebrates in spring was explained more importantly by plant diversity (27% of variation) than by soil characteristics including TM concentrations (8%), whereas their community identity was evenly explained by plant diversity and soil characteristics (2-7%). In autumn, diversity of GD invertebrates was only explained by plant diversity (12%), and their identity was only explained by soil characteristics (8%). We conclude that vegetation shapes invertebrate communities more importantly than direct effects of TM on invertebrates. Vegetation should be taken into account when addressing the impacts of environmental contamination on animal communities.


Asunto(s)
Invertebrados , Suelo , Animales , Biodiversidad , Ecosistema , Contaminación Ambiental , Plantas
2.
Environ Sci Technol ; 53(10): 5977-5986, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31002242

RESUMEN

Exposure of terrestrial mammals to chemical contaminants like trace metals (TMs) is considered to be mainly based on trophic transfer. Although relationships between TM transfer to animals and identity of contaminated food have been studied, the variation of the TM transfer with respect to diet diversity has been poorly documented. In this study, the oral exposure to TMs of wood mice Apodemus sylvaticus was investigated with respect to both the number of different items, i.e., diet richness, and the identity of items determined by metabarcoding from their stomach content, i.e., diet composition. The results showed that consuming Salicaceae, a known cadmium accumulator plant family, significantly increased exposure to cadmium and zinc. However, an increase in diet richness minimized exposure to cadmium when mice consumed Salicaceae items. This strongly suggests that TM accumulator items can lead to a high oral exposure to TMs but that such high exposure due to TM accumulator items can be " diluted" by diet richness due to other low accumulator items. Our results clearly indicate that both the presence of certain items in the diet and diet richness are important determinants of exposure to TMs in generalist animals, which matches the predictions of the " diet dilution hypothesis".


Asunto(s)
Contaminantes del Suelo , Oligoelementos , Animales , Cadmio , Dieta , Ratones , Murinae
3.
Mol Ecol ; 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30069953

RESUMEN

Mammals are mainly exposed to trace metals (TMs) via consuming contaminated food. Several studies have demonstrated relationships between metal concentrations in food and in animal tissues. However, potential effects of TMs on feeding behaviour of wildlife have been poorly documented under field conditions, despite experimental evidence showing that food selection is impacted by resource contamination. Here, we test the hypothesis that the diet of a generalist rodent, the wood mouse (Apodemus sylvaticus), is altered by soil TM contamination in the field. Wood mice were sampled in spring and in autumn along a gradient of soil contamination in the surroundings of a former smelter located in northern France. Available resources in the field were inventoried, and the diet of the animals was analysed using DNA "metabarcoding." We demonstrated that (a) relationship between the resource richness in the diet and their richness in the field was altered by soil metal contamination. Wood mice specialized their diet along the gradient of soil metal contamination for both plant and invertebrate resources in spring. We also showed that (b) preference for Salicaceae, a plant family accumulating metals, decreased when soil contamination increased. These results suggest that environmental TM pollution could act as a force modulating trophic interactions in terrestrial food webs, thereby affecting wildlife exposure to contaminants by trophic route.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...