Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37177009

RESUMEN

Voids in face-centered cubic (fcc) metals are commonly assumed to form via the aggregation of vacancies; however, the mechanisms of vacancy clustering and diffusion are not fully understood. In this study, we use computational modeling to provide a detailed insight into the structures and formation energies of primary vacancy clusters, mechanisms and barriers for their migration in bulk copper, and how these properties are affected at simple grain boundaries. The calculations were carried out using embedded atom method (EAM) potentials and density functional theory (DFT) and employed the site-occupation disorder code (SOD), the activation relaxation technique nouveau (ARTn) and the knowledge led master code (KLMC). We investigate stable structures and migration paths and barriers for clusters of up to six vacancies. The migration of vacancy clusters occurs via hops of individual constituent vacancies with di-vacancies having a significantly smaller migration barrier than mono-vacancies and other clusters. This barrier is further reduced when di-vacancies interact with grain boundaries. This interaction leads to the formation of self-interstitial atoms and introduces significant changes into the boundary structure. Tetra-, penta-, and hexa-vacancy clusters exhibit increasingly complex migration paths and higher barriers than smaller clusters. Finally, a direct comparison with the DFT results shows that EAM can accurately describe the vacancy-induced relaxation effects in the Cu bulk and in grain boundaries. Significant discrepancies between the two methods were found in structures with a higher number of low-coordinated atoms, such as penta-vacancies and di-vacancy absortion by grain boundary. These results will be useful for modeling the mechanisms of diffusion of complex defect structures and provide further insights into the structural evolution of metal films under thermal and mechanical stress.

2.
Inorg Chem ; 59(24): 18305-18313, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33300332

RESUMEN

We have synthesized inverse-perovskite-type oxysilicides and oxygermanides represented by R3SiO and R3GeO (R = Ca and Sr) and studied their characteristics in the search for nontoxic narrow band gap semiconductors. These compounds exhibit a sharp absorption edge around 0.9 eV and a luminescence peak in the same energy range. These results indicate that the obtained materials have a direct-band electronic structure, which was confirmed by hybrid DFT calculations. These materials, made from earth abundant and nontoxic elements and with a relatively light electron/hole effective mass, represent strong candidates for nontoxic optoelectronic devices in the infrared range.

3.
Phys Chem Chem Phys ; 20(20): 13962-13973, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29744486

RESUMEN

We have performed a genetic algorithm search on the tight-binding interatomic potential energy surface (PES) for small TiN (N = 2-32) clusters. The low energy candidate clusters were further refined using density functional theory (DFT) calculations with the PBEsol exchange-correlation functional and evaluated with the PBEsol0 hybrid functional. The resulting clusters were analysed in terms of their structural features, growth mechanism and surface area. The results suggest a growth mechanism that is based on forming coordination centres by interpenetrating icosahedra, icositetrahedra and Frank-Kasper polyhedra. We identify centres of coordination, which act as centres of bulk nucleation in medium sized clusters and determine the morphological features of the cluster.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA