Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animal ; 17 Suppl 5: 100970, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743149

RESUMEN

The reticulorumen (RR) fractional passage rate (kp; /h) of particles and solutes plays an important role in fiber digestion, methane production, and microbial yield. However, none of the available models for predicting RR kp consider individuals' characteristics of growing goats. The objective was to develop empirical models for predicting the RR kp of particles and solutes in growing goats. Our database involved 175 individual records of castrated males (n = 61), females (n = 57), and intact males (n = 57) growing Saanen goats fed ad libitum, 75% or 50% of ad libitum. Goats were slaughtered around 15, 22, 30, 37, or 45 kg BW. We used Akaike's information criterion to select the best prediction models. We evaluated the predictive ability of these models using Lin's concordance correlation coefficient (CCC) and RMSE of prediction (RMSPE) in a 4-fold cross-evaluation. The DM intake (DMI; kg/day), potentially digestible NDF intake (pdNDFI) level (g/kg BW), and RR wet pool size (kg) demonstrated similar importance in predicting RR kp of solutes (CCC = 0.59; RMSPE = 0.050 /h or 34.43%). However, when RR wet pool size was not included in the model, RR kp of solutes could still be precisely and accurately predicted using only DMI level (g/kg BW) (CCC = 0.47; RMSPE = 0.053 /h or 36.58%). The RR wet tissues and wet pool size (kg), NDF intake (NDFI) (kg/day), and indigestible NDFI (iNDFI):NDFI ratio were important predictors of RR kp of particles (CCC = 0.51; RMSPE = 0.0064 /h or 25.43 %). However, when RR wet tissues and wet pool size were not included in the model, iNDFI:NDFI ratio, NDFI level (g/kg BW), and RR kp of solutes presented greater importance in predicting RR kp of particles (CCC = 0.20; RMSPE = 0.0074 /h or 29.55%). Sex was not a significant predictor variable for the selected models. In summary, the RR kp of solutes was more dependent on feed intake level while the RR kp of particles was more dependent on diet composition and RR kp of solutes. Our models were precise and accurate for predicting RR kp of solutes (CCC = 0.57 and 0.47; RMSPE = 0.051 and 0.054 /h) and particles (CCC = 0.48 and 0.17; RMSPE = 0.0066 and 0.0076 /h) after cross-evaluation. This suggests that our models can be integrated into feeding systems with mechanistic approaches that simulate other reticulorumen functions, such as digestion, microbial growth, and methane emission.


Asunto(s)
Dieta , Ingestión de Alimentos , Humanos , Masculino , Femenino , Animales , Dieta/veterinaria , Cabras , Metano , Rumen , Alimentación Animal/análisis , Digestión , Fibras de la Dieta
2.
Animal ; 14(9): 1857-1866, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32248874

RESUMEN

Nutrient requirements in cattle are dependent on physiological stage, breed and environmental conditions. In Holstein × Gyr crossbred dairy heifers, the lack of data remains a limiting factor for estimating energy and protein requirements. Thus, we aimed to estimate the energy and protein requirements of Holstein × Gyr crossbred heifers raised under tropical conditions. Twenty-two crossbred (½ Holstein × ½ Gyr) heifers with an average initial BW of 102.2 ± 3.4 kg and 3 to 4 months of age were used. To estimate requirements, the comparative slaughter technique was used: four animals were assigned to the reference group, slaughtered at the beginning of the experiment to estimate the initial empty BW (EBW) and composition of the animals that remained in the experiment. The remaining animals were randomized into three treatments based on targeted rates of BW gain: high (1.0 kg/day), low (0.5 kg/day) and close to maintenance (0.1 kg/day). At the end of the experiment, all animals were slaughtered to determine EBW, empty body gain (EBG) and body energy and protein contents. The linear regression parameters were estimated using PROC MIXED of SAS (version 9.4). Estimates of the parameters of non-linear regressions were adjusted through PROC NLIN of SAS using the Gauss-Newton method for parameter fit. The net requirements of energy for maintenance (NEm) and metabolizable energy for maintenance (MEm) were 0.303 and 0.469 MJ/EBW0.75 per day, respectively. The efficiency of use of MEm was 64.5%. The estimated equation to predict the net energy requirement for gain (NEg) was: NEg (MJ/day) = 0.299 × EBW0.75 × EBG0.601. The efficiency of use of ME for gain (kg) was 30.7%. The requirement of metabolizable protein for maintenance was 3.52 g/EBW0.75 per day. The equation to predict net protein requirement for gain (NPg) was: NPg (g/day) = 243.65 × EBW-0.091 × EBG. The efficiency of use of metabolizable protein for gain (k) was 50.8%. We observed noteworthy differences when comparing to ME and protein requirements of Holstein × Gyr crossbred heifers with other systems. In addition, we also observed differences in estimates for NEm, NEg, NPg, kg and k. Therefore, we propose that the equations generated in the present study should be used to estimate energy and protein requirements for Holstein × Gyr crossbred dairy heifers raised in tropical conditions in the post-weaning phase up to 185 kg of BW.


Asunto(s)
Enfermedades de los Bovinos , Ingestión de Energía , Necesidades Nutricionales , Alimentación Animal/análisis , Animales , Composición Corporal , Peso Corporal , Bovinos/genética , Dieta , Metabolismo Energético , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...