Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Environ Sci Pollut Res Int ; 30(52): 113055-113067, 2023 Nov.
Article En | MEDLINE | ID: mdl-37848795

Black wattle (Acacia mearnsii De Wild.) barks are residues produced by tannin industries in huge quantities, which are normally discharged on environmental or used for energy production. Therefore, this study aimed to evaluate the use of black wattle bark residues as a raw material on obtaining of a rich-cellulose material by alkaline (MET1), acetosolv (MET2), and organosolv (MET3) procedures. The results obtained indicated that the alkaline methodology, followed by a bleaching step (MET1), promoted klason lignin and hemicellulose removals more efficiently. It was possible to observe that better results were achieved using NaOH concentration of 6% (wt%), at 65 °C for 2.5 h, presenting a yield of 63.24 ± 1.25%, and a reduction on klason lignin content of almost 90.45%. Regarding the bleaching step, it was possible to obtain a material free of non-cellulosic compounds with a yield of 78.28 ± 1.48%. Thermogravimetric analysis indicated the removal of lignin and hemicellulose as well as an increase in cellulose degradation temperature, due to changes in crystalline phases. According to X-ray diffraction (XRD), the procedures employed have led to an increase in crystallinity from 66.27 to 91.78% due to the removal of non-cellulosic compounds. Scanning electron microscopy (SEM) showed morphological alterations in accordance with the removal of non-cellulosic compounds.


Acacia , Cellulose , Animals , Cellulose/chemistry , Lignin/metabolism , Acacia/chemistry , Plant Bark/chemistry , Comb and Wattles/metabolism
2.
Foods ; 12(8)2023 Apr 19.
Article En | MEDLINE | ID: mdl-37107487

The harmful effects on the environment caused by the indiscriminate use of synthetic plastics and the inadequate management of post-consumer waste have given rise to efforts to redirect this consumption to bio-based economic models. In this sense, using biopolymers to produce materials is a reality for food packaging companies searching for technologies that allow these materials to compete with those from synthetic sources. This review paper focused on the recent trends in multilayer films with the perspective of using biopolymers and natural additives for application in food packaging. Firstly, the recent developments in the area were presented concisely. Then, the main biopolymers used (gelatin, chitosan, zein, polylactic acid) and main methods for multilayer film preparation were discussed, including the layer-by-layer, casting, compression, extrusion, and electrospinning methods. Furthermore, we highlighted the bioactive compounds and how they are inserted in the multilayer systems to form active biopolymeric food packaging. Furthermore, the advantages and drawbacks of multilayer packaging development are also discussed. Finally, the main trends and challenges in using multilayer systems are presented. Therefore, this review aims to bring updated information in an innovative approach to current research on food packaging materials, focusing on sustainable resources such as biopolymers and natural additives. In addition, it proposes viable production routes for improving the market competitiveness of biopolymer materials against synthetic materials.

3.
Foods ; 11(6)2022 Mar 09.
Article En | MEDLINE | ID: mdl-35327215

This research focused on the development of active and intelligent films based on a carrageenan biopolymer incorporated with jaboticaba peels extract (JPE). The bioactive extract was obtained by maceration extraction and showed high concentrations of total phenolic content (TP), total anthocyanin (TA), cyanidin-3-glucoside (Cn-3-Glu), antioxidant activity (AA), and microbial inhibition (MI) against E. coli, being promising for use as a natural additive in food packaging. The carrageenan films were produced using the casting technique, incorporating different concentrations of JPE, and characterized. The results of the thickness and Young's modulus of the film increased in the films supplemented with JPE and the addition of the extract showed a decrease in elongation capacity and tensile strength, in water vapor permeability, and a lower rate of swelling in the water. In addition, the incorporation of JPE into the polymeric matrix promotes a change in the color of the films when compared to the control film and improves the opacity property. This is a positive effect as the material has a UV-vis light barrier which is interesting for food packaging. The increase in the active potential of the films was directly proportional to the concentration of JPE. The films results showed visible changes from purple to brown when in contact with different pH, which means that films have an intelligent potential. Accordingly, this novel carrageenan based-film incorporated with JPE could be a great strategy to add natural additives into packaging material to obtain an active potential and also an indicator for monitoring food in intelligent packaging.

4.
Molecules ; 25(23)2020 Nov 27.
Article En | MEDLINE | ID: mdl-33260859

This research investigated the bioactive potential of jaboticaba peel extract (JPE) and proposed an innovative material for food packaging based on carrageenan films incorporated with JPE. The extract was obtained through microwave assisted extraction (MAE) according to central composite rotational design and the optimized conditions showed a combined antimicrobial and antioxidant actions when the extraction process is accomplished at 80 °C and 1 min. The carrageenan film incorporated with JPE was manageable, homogeneous and the presence of JPE into film increased the thickness and improved the light barrier of the film. The results of solubility and mechanical properties did not show significant differences. The benefit of using MAE to improve the recovery of bioactive compounds was demonstrated and the carrageenan film with JPE showed a great strategy to add additives into food packaging.


Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Bacteria/drug effects , Carrageenan/pharmacology , Food Packaging/methods , Myrtaceae/chemistry , Plant Extracts/pharmacology , Carrageenan/chemistry
5.
Polymers (Basel) ; 12(12)2020 Dec 05.
Article En | MEDLINE | ID: mdl-33291430

This work focused on the recovery bioactive compounds from jaboticaba peels and to develop ultrafine fibers from zein incorporated with the jaboticaba extract by electrospinning technique. Jaboticaba peel extracts (JPE) were obtained by maceration according a central composite rotational design (CCDR) and characterized with respect to total phenolic content (TP), antioxidant activity (AA) and total anthocyanin (TA). The optimal condition for the extraction was obtained using a desirability function in order to maximize the presence of bioactive compounds. Under these conditions the amount of cyanidin-3-glucoside (Cn-3-Glu) and the antimicrobial inhibition (AI) of E. coli were evaluated. Ultrafine fibers were obtained by electrospinning technique using zein in an aqueous ethanol as solvent and freeze-dried JPE at different concentrations (1.7% and 3.3%) to produce a composite membrane. The apparent viscosity and electrical conductivity of the polymer solutions, as well as the morphology, thermal stability and functional groups of the ultrafine fibers, were evaluated. The optimal conditions for extraction were 88 °C and pH 1. Under these conditions, a high amount of Cn-3-Glu was obtained (718.12 mg 100 g-1), along with 22.2% antimicrobial inhibition against E. coli. The addition of JPE into composite membranes did not affect the morphology of fibers, which presented a homogeneous and continuous format. Therefore, fibers containing JPE showed interesting characteristics for the food packaging industry.

6.
Bol. Centro Pesqui. Process. Aliment ; 23(2): 397-412, jul.-dez. 2005. tab, graf
Article Pt | LILACS | ID: lil-423818

O presente estudo teve como objetivo caracterizar amostras de água-de-coco, comercializadas em grandes supermercados e hipermercados da região sudeste e correlacionar tais características com os diferentes tipos de tecnologia de fabricação empregados. Utilizou-se a análise descritiva quantitativa para levantar o perfil sensorial de tres marcas comerciais de água-decoco 9resfriada, congelada e esterilizada), disponíveis no mercado de Campinas, SP9Brasil) e avaliou-se a aceitação das amostras pelso consumidores mediante teste afetivo. Observou-se que as águas-de-coco estavam sensorialmente descaracterizadas, apresentando sabores e aromas estranhos descritos como água tônica, ferrugem e pútrido, além de baixa aceitação. Tal resultado pode estar diretamente relacionado ao tipo de processamento aplicado ao produto, evidenciando a necessidade de rápida melhoria das linhas de processamento de água-de-coco


Beverages , Cocos , Food Analysis
...