Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(51): e2306447, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865834

RESUMEN

The understanding of catalyst active sites is a fundamental challenge for the future rational design of optimized and bespoke catalysts. For instance, the partial reduction of Ce4+ surface sites to Ce3+ and the formation of oxygen vacancies are critical for CO2 hydrogenation, CO oxidation, and the water gas shift reaction. Furthermore, metal nanoparticles, the reducible support, and metal support interactions are prone to evolve under reaction conditions; therefore a catalyst structure must be characterized under operando conditions to identify active states and deduce structure-activity relationships. In the present work, temperature-induced morphological and chemical changes in Ni nanoparticle-decorated mesoporous CeO2 by means of in situ quantitative multimode electron tomography and in situ heating electron energy loss spectroscopy, respectively, are investigated. Moreover, operando electron energy loss spectroscopy is employed using a windowed gas cell and reveals the role of Ni-induced hydrogen spillover on active Ce3+ site formation and enhancement of the overall catalytic performance.

2.
ACS Appl Energy Mater ; 6(11): 5690-5699, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37323204

RESUMEN

The development of high current density anodes for the oxygen evolution reaction (OER) is fundamental to manufacturing practical and reliable electrochemical cells. In this work, we have developed a bimetallic electrocatalyst based on cobalt-iron oxyhydroxide that shows outstanding performance for water oxidation. Such a catalyst is obtained from cobalt-iron phosphide nanorods that serve as sacrificial structures for the formation of a bimetallic oxyhydroxide through phosphorous loss concomitantly to oxygen/hydroxide incorporation. CoFeP nanorods are synthesized using a scalable method using triphenyl phosphite as a phosphorous precursor. They are deposited without the use of binders on nickel foam to enable fast electron transport, a highly effective surface area, and a high density of active sites. The morphological and chemical transformation of the CoFeP nanoparticles is analyzed and compared with the monometallic cobalt phosphide in alkaline media and under anodic potentials. The resulting bimetallic electrode presents a Tafel slope as low as 42 mV dec-1 and low overpotentials for OER. For the first time, an anion exchange membrane electrolysis device with an integrated CoFeP-based anode was tested at a high current density of 1 A cm-2, demonstrating excellent stability and Faradaic efficiency near 100%. This work opens up a way for using metal phosphide-based anodes for practical fuel electrosynthesis devices.

3.
ChemSusChem ; 16(19): e202300344, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37306621

RESUMEN

Anthropogenic CO2 can be converted to alternative fuels and value-added products by electrocatalytic routes. Copper-based catalysts are found to be the star materials for obtaining longer-chain carbon compounds beyond 2e- products. Herein, we report a facile hydrothermal fabrication of a highly robust electrocatalyst: in-situ grown heterostructures of plate-like CuO-Cu2 O on carbon black. Simultaneous synthesis of copper-carbon catalysts with varied amounts of copper was conducted to determine the optimum blend. It is observed that the optimum ratio and structure have aided in achieving the state of art faradaic efficiency for ethylene >45 % at -1.6 V vs. RHE at industrially relevant high current densities over 160 to 200 mA ⋅ cm-2 . It is understood that the in-situ modification of CuO to Cu2 O during the electrolysis is the driving force for the highly selective conversion of CO2 to ethylene through the *CO intermediates at the onset potentials followed by C-C coupling. The excellent distribution of Cu-based platelets on the carbon structure enables rapid electron transfer and enhanced catalytic efficiency. It is inferred that choosing the right composition of the catalyst by tuning the catalyst layer over the gas diffusion electrode can substantially affect the product selectivity and promote reaching the potential industrial scale.

4.
ACS Sustain Chem Eng ; 11(9): 3633-3643, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36911876

RESUMEN

Transition metals, such as titanium (Ti) and copper (Cu) along with their respective metal oxides (TiO2, Cu2O, and CuO), have been widely studied as electrocatalysts for nitrate electrochemical reduction with important outcomes in the fields of denitrification and ammonia generation. Based on this, this work conducted an evaluation of a composite electrode that integrates materials with different intrinsic activities (i.e., Cu and Cu2O for higher activity for nitrate conversion; Ti for higher faradaic efficiency to ammonia) looking for potential synergistic effects in the direction of ammonia generation. The specific performance of single-metal and composite electrodes has shown a strong dependence on pH and nitrate concentration conditions. Faradaic efficiency to ammonia of 92% and productivities of 0.28 mmolNH3 ·cm-2·h-1 at 0.5 V vs reversible hydrogen electrode (RHE) values are achieved, demonstrating the implicit potential of this approach in comparison to direct N2RR with values in the order of µmolNH3 ·h-1·cm-2. Finally, the electrochemical rate constants (k) for Ti, Cu, and Cu2O-Cu/Ti disk electrodes were determined by the Koutecky-Levich analysis with a rotating disk electrode (RDE) in 3.02 × 10-6, 3.88 × 10-4, and 4.77 × 10-4 cm·s-1 demonstrating an apparent synergistic effect for selective NiRR to ammonia with a Cu2O-Cu/Ti electrode.

5.
Dalton Trans ; 52(16): 5234-5242, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36974616

RESUMEN

Metal-organic frameworks (MOFs) possess high CO2 adsorption properties and are considered to be a promising candidate for the electrochemical carbon dioxide reduction reaction (eCO2RR). However, their insufficient selectivity and current density constrain their further exploration in the eCO2RR. In this work, by introducing a very small proportion of 2,5-dihydroxyterephthalic acid (DOBDC) into ZIF-8, a surface modified ZIF-8-5% catalyst was synthesized by a post-modification method, exhibiting enhanced selectivity (from 56% to 79%) and current density (from -4 mA cm-2 to -10 mA m-2) compared to ZIF-8. Density functional theory (DFT) calculations further demonstrate that the boosted eCO2RR performance on ZIF-8-5% could be attributed to the improved formation of the *COOH intermediate stemming from successful DOBDC surface modification. This work opens a new path for improving the catalytic properties of MOFs via their surface modification.

6.
Angew Chem Int Ed Engl ; 61(49): e202211570, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36216781

RESUMEN

Lithium-sulfur batteries (LSBs) are still limited by the shuttle of lithium polysulfides (LiPS) and the slow Li-S reaction. Herein, we demonstrate that when using cobalt sulfide as a catalytic additive, an external magnetic field generated by a permanent magnet can significantly improve the LiPS adsorption ability and the Li-S reaction kinetics. More specifically, the results show both experimentally and theoretically how an electron spin polarization of Co ions reduces electron repulsion and enhances the degree of orbital hybridization, thus resulting in LSBs with unprecedented performance and stability. Under an external magnetic field, LSBs with 0.0084 % per cycle decay rate at 2 C during 8150 cycles are produced. Overall, this work not only demonstrates an effective strategy to promote LiPS adsorption and electrochemical conversion in LSBs at no additional energy cost but also enriches the application of the spin effect in the electrocatalysis fields.

7.
ACS Appl Mater Interfaces ; 14(28): 32157-32165, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35815662

RESUMEN

The adsorption and activation of CO2 on the electrode interface is a prerequisite and key step for electrocatalytic CO2 reduction reaction (eCO2 RR). Regulating the interfacial microenvironment to promote the adsorption and activation of CO2 is thus of great significance to optimize overall conversion efficiency. Herein, a CO2-philic hydroxyl coordinated ZnO (ZnO-OH) catalyst is fabricated, for the first time, via a facile MOF-assisted method. In comparison to the commercial ZnO, the as-prepared ZnO-OH exhibits much higher selectivity toward CO at lower applied potential, reaching a Faradaic efficiency of 85% at -0.95 V versus RHE. To the best of our knowledge, such selectivity is one of the best records in ZnO-based catalysts reported till date. Density functional theory calculations reveal that the coordinated surficial -OH groups are not only favorable to interact with CO2 molecules but also function in synergy to decrease the energy barrier of the rate-determining step and maintain a higher charge density of potential active sites as well as inhibit undesired hydrogen evolution reaction. Our results indicate that engineering the interfacial microenvironment through the introduction of CO2-philic groups is a promising way to achieve the global optimization of eCO2 RR via promoting adsorption and activation of CO2.

8.
ACS Nano ; 16(7): 11102-11114, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35758405

RESUMEN

The shuttling of soluble lithium polysulfides (LiPS) and the sluggish Li-S conversion kinetics are two main barriers toward the practical application of lithium-sulfur batteries (LSBs). Herein, we propose the addition of copper selenide nanoparticles at the cathode to trap LiPS and accelerate the Li-S reaction kinetics. Using both computational and experimental results, we demonstrate the crystal phase and concentration of copper vacancies to control the electronic structure of the copper selenide, its affinity toward LiPS chemisorption, and its electrical conductivity. The adjustment of the defect density also allows for tuning the electrochemically active sites for the catalytic conversion of polysulfide. The optimized S/Cu1.8Se cathode efficiently promotes and stabilizes the sulfur electrochemistry, thus improving significantly the LSB performance, including an outstanding cyclability over 1000 cycles at 3 C with a capacity fading rate of just 0.029% per cycle, a superb rate capability up to 5 C, and a high areal capacity of 6.07 mAh cm-2 under high sulfur loading. Overall, the present work proposes a crystal phase and defect engineering strategy toward fast and durable sulfur electrochemistry, demonstrating great potential in developing practical LSBs.

9.
Adv Mater ; 34(10): e2108835, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35043500

RESUMEN

The shuttling behavior and sluggish conversion kinetics of the intermediate lithium polysulfides (LiPS) represent the main obstructions to the practical application of lithium-sulfur batteries (LSBs). Herein, a 1D π-d conjugated metal-organic framework (MOF), Ni-MOF-1D, is presented as an efficient sulfur host to overcome these limitations. Experimental results and density functional theory calculations demonstrate that Ni-MOF-1D is characterized by a remarkable binding strength for trapping soluble LiPS species. Ni-MOF-1D also acts as an effective catalyst for S reduction during the discharge process and Li2 S oxidation during the charging process. In addition, the delocalization of electrons in the π-d system of Ni-MOF-1D provides a superior electrical conductivity to improve electron transfer. Thus, cathodes based on Ni-MOF-1D enable LSBs with excellent performance, for example, impressive cycling stability with over 82% capacity retention over 1000 cycles at 3 C, superior rate performance of 575 mAh g-1 at 8 C, and a high areal capacity of 6.63 mAh cm-2 under raised sulfur loading of 6.7 mg cm-2 . The strategies and advantages here demonstrated can be extended to a broader range of π-d conjugated MOFs materials, which the authors believe have a high potential as sulfur hosts in LSBs.

10.
Sci Rep ; 12(1): 137, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997066

RESUMEN

This paper presents the electrochemical performance and characterization of nano Si electrodes coated with titanicone (TiGL) as an anode for Li ion batteries (LIBs). Atomic layer deposition (ALD) of the metal combined with the molecular layer deposition (MLD) of the organic precursor is used to prepare coated electrodes at different temperatures with improved performance compared to the uncoated Si electrode. Coated electrodes prepared at 150 °C deliver the highest capacity and best current response of 1800 mAh g-1 at 0.1 C and 150 mAh g-1 at 20 C. This represented a substantial improvement compared to the Si baseline which delivers a capacity of 1100 mAh g-1 at 0.1 C but fails to deliver capacity at 20 C. Moreover, the optimized coated electrode shows an outstanding capacity of 1200 mAh g-1 at 1 C for 350 cycles with a capacity retention of 93%. The improved discharge capacity, electrode efficiencies, rate capability and electrochemical stability for the Si-based electrode presented in this manuscript are directly correlated to the optimized TiGL coating layer deposited by the ALD/MLD processes, which enhances lithium kinetics and electronic conductivity as demonstrated by equivalent circuit analysis of low frequency impedance data and conductivity measurements. The coating strategy also stabilizes SEI film formation with better Coulombic efficiencies (CE) and improves long cycling stability by reducing capacity lost.

11.
Dalton Trans ; 50(19): 6710-6717, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33908967

RESUMEN

The Semi-Solid Flow Battery (SSFB) is an interesting energy storage system (ESS) for stationary applications but, in spite of the significant work presented on this technology so far, understanding the chemical and physical factors limiting its electrochemical performance is still blurred by measurements under static conditions rather than under real operando conditions. In this study, we have used Vulcan carbon as a conductive additive to formulate LiNi1/3Co1/3Mn1/3O2 (NCM) based slurries as the catholyte to characterize electrical and electrochemical performances using a 3-electrode flow cell by electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge (GCD), respectively. The results are correlated with post-mortem analyses of recovered slurries using Scanning Electron Microscopy (SEM), Raman spectroscopy and Rietveld refinement of the NCM crystal structure. Due to the improved electrochemical cycling stability of the Vulcan-based NCM slurry and cell configuration used for measurements, we have been able to characterize the system in terms of electrical contributions and correlate them with particle degradation as well as detect antisite defect formation on cycling. The electrical stability of the contact resistance and cation mixing are identified as factors limiting the performance of the semi-solid slurry. The latter is frequently reported in porous electrodes for Li-ion batteries but, to our knowledge, it has not been reported for SSFBs to date.

12.
ACS Nano ; 14(11): 15492-15504, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33084302

RESUMEN

To commercially realize the enormous potential of lithium-sulfur batteries (LSBs) several challenges remain to be overcome. At the cathode, the lithium polysulfide (LiPS) shuttle effect must be inhibited and the redox reaction kinetics need to be substantially promoted. In this direction, this work proposes a cathode material based on a transition-metal selenide (TMSe) as both adsorber and catalyst and a hollow nanoreactor architecture: ZnSe/N-doped hollow carbon (ZnSe/NHC). It is here demonstrated both experimentally and by means of density functional theory that this composite provides three key benefits to the LSBs cathode: (i) A highly effective trapping of LiPS due to the combination of sulfiphilic sites of ZnSe, lithiophilic sites of NHC, and the confinement effect of the cage-based structure; (ii) a redox kinetic improvement in part associated with the multiple adsorption sites that facilitate the Li+ diffusion; and (iii) an easier accommodation of the volume expansion preventing the cathode damage due to the hollow design. As a result, LSB cathodes based on S@ZnSe/NHC are characterized by high initial capacities, superior rate capability, and an excellent stability. Overall, this work not only demonstrates the large potential of TMSe as cathode materials in LSBs but also probes the nanoreactor design to be a highly suitable architecture to enhance cycle stability.

13.
Nat Commun ; 11(1): 57, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31896753

RESUMEN

Atom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm-2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: -25 mV and Tafel slope: 54 mV dec-1), thus indicating an intrinsically high activation of the TMD GBs.

14.
Phys Chem Chem Phys ; 21(9): 5086-5096, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30762849

RESUMEN

The formation of heterostructures has proven to be a viable way to achieve high photoelectrochemical water splitting efficiencies with BiVO4 based photoanodes. Especially, cobalt and nickel based oxides are suitable low cost contact materials. However, the exact role of these contact materials is not yet completely understood because of the difficulty to individually quantify the effects of surface passivation, charge carrier separation and catalysis on the efficiency of a heterostructure. In this study, we used photoelectron spectroscopy in combination with in situ thin film deposition to obtain direct information on the interface structure between polycrystalline BiVO4 and NiO, CoOx and Sn-doped In2O3 (ITO). Strong upwards band bending was observed for the BiVO4/NiO and BiVO4/CoOx interfaces without observing chemical changes in BiVO4, while limited band bending and reduction of Bi and V was observed while forming the BiVO4/ITO interface. Thus, the tunability of the Fermi level position within BiVO4 seems to be limited to a certain range. The feasibility of high upwards band bending through junctions with high work function (WF) compounds demonstrate that nickel oxide and cobalt oxide are able to enhance the charge carrier separation in BiVO4. Similar studies could help to identify whether new photoelectrode materials and their heterostructures would be suitable for photoelectrochemical water splitting.

15.
ChemSusChem ; 12(7): 1428-1436, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30633450

RESUMEN

The concept of hybrid tandem device structures that combine metal oxides with thin-film semiconducting photoabsorbers holds great promise for large-scale, robust, and cost-effective bias-free photoelectrochemical water splitting (PEC-WS). This work highlights important steps toward the efficient coupling of high-performance hematite photoanodes with multijunction thin-film silicon photocathodes providing high bias-free photocurrent density. The hybrid PEC-WS device is optimized by testing three types of multijunction silicon photocathodes with the hematite photoanode: amorphous silicon (a-Si:H) tandem: a-Si:H/a-Si:H and triple junction with microcrystalline silicon (µc-Si:H): a-Si:H/a-Si:H/µc-Si:H and a-Si:H/µc-Si:H/µc-Si:H. The results provide evidence that the multijunction structures offer high flexibility for hybrid tandem devices with regard to tunable photovoltages and spectral matching. Furthermore, both photoanode and photocathode are tested under various electrolyte and light concentration conditions, respectively, with respect to their photoelectrochemical performance and stability. A 27 % enhancement in the solar-to-hydrogen conversion efficiency is observed upon concentrating light from 100 to 300 mW cm-2 . Ultimately, bias-free water splitting is demonstrated, with a photocurrent density of 4.6 mA cm-2 (under concentrated illumination) paired with excellent operation stability for more than 24 h of the all-earth-abundant and low-cost hematite/silicon tandem PEC-WS device.

16.
ACS Appl Mater Interfaces ; 10(50): 43650-43660, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30480996

RESUMEN

The present study outlines the important steps to bring electrochemical conversion of carbon dioxide (CO2) closer to commercial viability by using a large-scale metallic foam electrode as a highly conductive catalyst scaffold. Because of its versatility, it was possible to specifically tailor three-dimensional copper foam through coating with silver dendrite catalysts by electrodeposition. The requirements of high-yield CO2 conversion to carbon monoxide (CO) were met by tuning the deposition parameters toward a homogeneous coverage of the copper foam with nanosized dendrites, which additionally featured crystallographic surface orientations favoring CO production. The presented results evidence that Ag dendrites, owing a high density of planes with stepped (220) surface sites, paired with the superior active surface area of the copper foam can significantly foster the CO productivity. In a continuous flow-cell reactor setup, CO Faradaic efficiencies reaching from 85 to 96% for a wide range of low applied cathode potentials (<1.0 VRHE) along with high CO current densities up to 27 mA/cm2 were achieved, far outperforming other tested scaffold materials. Overall, this research provides new strategic guidelines for the fabrication of efficient and versatile cathodes for CO2 conversion compatible with large-scale integrated prototype devices.

17.
ACS Appl Mater Interfaces ; 10(16): 13425-13433, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29578332

RESUMEN

CZTS/Se kesterite-based solar cells have been protected by conformal atomic layer deposition (ALD)-deposited TiO2 demonstrating its feasibility as powerful photocathodes for water splitting in highly acidic conditions (pH < 1), achieving stability with no detected degradation and with current density levels similar to photovoltaic productivities. The ALD has allowed low deposition temperatures of 200 °C for TiO2, preventing significant variations to the kesterite structure and CdS heterojunction, except for the pure-sulfide stoichiometry, which was studied by Raman spectroscopy. The measured photocurrent at 0 V vs reversible hydrogen electrode, 37 mA·cm-2, is the highest reported to date, and the associated half-cell solar-to-hydrogen efficiency reached 7%, being amongst the largest presented for kesterite-based photocathodes, corroborating the possibility of using them as abundant low-cost alternative photoabsorbers as their efficiencies are improved toward those of chalcopyrites. An electrical circuit has been proposed to model the photocathode, which comprises the photon absorption, charge transfer through the protective layer, and catalytic performance, which paves the way to the design of highly efficient photoelectrodes.

18.
ChemSusChem ; 10(9): 2089-2098, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28247981

RESUMEN

Hydrogen-treated TiO2 as an electrocatalyst has shown to boost the capacity of high-performance all-vanadium redox flow batteries (VRFBs) as a simple and eco-friendly strategy. The graphite felt-based GF@TiO2 :H electrode is able to inhibit the hydrogen evolution reaction (HER), which is a critical barrier for operating at high rate for long-term cycling in VRFBs. Significant improvements in charge/discharge and electron-transfer processes for the V3+ /V2+ reaction on the surface of reduced TiO2 were achieved as a consequence of the formation of oxygen functional groups and oxygen vacancies in the lattice structure. Key performance indicators of VRFB have been improved, such as high capability rates and electrolyte-utilization ratios (82 % at 200 mA cm-2 ). Additionally, high coulombic efficiencies (ca. 100 % up to the 96th cycle, afterwards >97 %) were obtained, demonstrating the feasibility of achieving long-term stability.


Asunto(s)
Suministros de Energía Eléctrica , Grafito/química , Titanio/química , Vanadio/química , Argón , Electrodos , Oxidación-Reducción
19.
J Am Chem Soc ; 138(49): 16037-16045, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960335

RESUMEN

The development of upscalable oxygen evolving electrocatalysts from earth-abundant metals able to operate in neutral or acidic environments and low overpotentials remains a fundamental challenge for the realization of artificial photosynthesis. In this study, we report a highly active phase of heterobimetallic cyanide-bridged electrocatalysts able to promote water oxidation under neutral, basic (pH < 13), and acidic conditions (pH > 1). Cobalt-iron Prussian blue-type thin films, formed by chemical etching of Co(OH)1.0(CO3)0.5·nH2O nanocrystals, yield a dramatic enhancement of the catalytic performance toward oxygen production, when compared with previous reports for analogous materials. Electrochemical, spectroscopic, and structural studies confirm the excellent performance, stability, and corrosion resistance, even when compared with state-of-the-art metal oxide catalysts under moderate overpotentials and in a remarkably large pH range, including acid media where most cost-effective water oxidation catalysts are not useful. The origin of the superior electrocatalytic activity toward water oxidation appears to be in the optimized interfacial matching between catalyst and electrode surface obtained through this fabrication method.

20.
ACS Appl Mater Interfaces ; 8(43): 29461-29469, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27730808

RESUMEN

The design and engineering of earth-abundant catalysts that are both cost-effective and highly active for water splitting are crucial challenges in a number of energy conversion and storage technologies. In this direction, herein we report the synthesis of Fe3O4@NiFexOy core-shell nanoheterostructures and the characterization of their electrocatalytic performance toward the oxygen evolution reaction (OER). Such nanoparticles (NPs) were produced by a two-step synthesis procedure involving the colloidal synthesis of Fe3O4 nanocubes with a defective shell and the posterior diffusion of nickel cations within this defective shell. Fe3O4@NiFexOy NPs were subsequently spin-coated over ITO-covered glass and their electrocatalytic activity toward water oxidation in carbonate electrolyte was characterized. Fe3O4@NiFexOy catalysts reached current densities above 1 mA/cm2 with a 410 mV overpotential and Tafel slopes of 48 mV/dec, which is among the best electrocatalytic performances reported in carbonate electrolyte.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...