Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
SLAS Discov ; 29(2): 100137, 2024 Mar.
Article En | MEDLINE | ID: mdl-38128829

Aberrant protein aggregation is a pathological cellular hallmark of many neurodegenerative diseases, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), where the tau protein is aggregating, forming neurofibrillary tangles (NFTs), and propagating from neuron to neuron. These processes have been linked to disease progression and a decline in cognitive function. Various therapeutic approaches aim at the prevention or reduction of tau aggregates in neurons. Human induced pluripotent stem cells (hiPSCs) are a very valuable tool in neuroscience discovery, as they offer access to potentially unlimited amounts of cell types that are affected in disease, including cortical neurons, for in vitro studies. We have generated an in vitro model for tau aggregation that uses hiPSC - derived neurons expressing an aggregation prone, fluorescently tagged version of the human tau protein after lentiviral transduction. Upon addition of tau seeds in the form of recombinant sonicated paired helical filaments (sPHFs), the neurons show robust, disease-like aggregation of the tau protein. The model was developed as a plate-based high content screening assay coupled with an image analysis algorithm to evaluate the impact of small molecules or genetic perturbations on tau. We show that the assay can be used to evaluate small molecules or screen targeted compound libraries. Using siRNA-based gene knockdown, genes of interest can be evaluated, and we could show that a targeted gene library can be screened, by screening nearly 100 deubiquitinating enzymes (DUBs) in that assay. The assay uses an imaging-based readout, a relatively short timeline, quantifies the extent of tau aggregation, and also allows the assessment of cell viability. Furthermore, it can be easily adapted to different hiPSC lines or neuronal subtypes. Taken together, this complex and highly relevant approach can be routinely applied on a weekly basis in the screening funnels of several projects and generates data with a turnaround time of approximately five weeks.


Alzheimer Disease , Induced Pluripotent Stem Cells , Humans , tau Proteins/genetics , tau Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Alzheimer Disease/metabolism , Neurons/metabolism
2.
Eur J Pharmacol ; 934: 175301, 2022 Nov 05.
Article En | MEDLINE | ID: mdl-36191631

In this study we aimed to reduce tau pathology, a hallmark of Alzheimer's Disease (AD), by activating mTOR-dependent autophagy in a transgenic mouse model of tauopathy by long-term dosing of animals with mTOR-inhibitors. Rapamycin treatment reduced the burden of hyperphosphorylated and aggregated pathological tau in the cerebral cortex only when applied to young mice, prior to the emergence of pathology. Conversely, PQR530 which exhibits better brain exposure and superior pharmacokinetic properties, reduced tau pathology even when the treatment started after the onset of pathology. Our results show that dosing animals twice per week with PQR530 resulted in intermittent, rather than sustained target engagement. Nevertheless, this pulse-like mTOR inhibition followed by longer intervals of re-activation was sufficient to reduce tau pathology in the cerebral cortex in P301S tau transgenic mice. This suggests that balanced therapeutic dosing of blood-brain-barrier permeable mTOR-inhibitors can result in a disease-modifying effect in AD and at the same time prevents toxic side effects due to prolonged over activation of autophagy.


Alzheimer Disease , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , tau Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Mice, Transgenic , Brain , Sirolimus/pharmacology , Disease Models, Animal
...