Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
J Environ Sci (China) ; 148: 602-613, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095193

RESUMEN

Airborne microplastics (MPs) are important pollutants that have been present in the environment for many years and are characterized by their universality, persistence, and potential toxicity. This study investigated the effects of terrestrial and marine transport of MPs in the atmosphere of a coastal city and compared the difference between daytime and nighttime. Laser direct infrared imaging (LDIR) and polarized light microscopy were used to characterize the physical and chemical properties of MPs, including number concentration, chemical types, shape, and size. Backward trajectories were used to distinguish the air masses from marine and terrestrial transport. Twenty chemical types were detected by LDIR, with rubber (16.7%) and phenol-formaldehyde resin (PFR; 14.8%) being major components. Three main morphological types of MPs were identified, and fragments (78.1%) are the dominant type. MPs in the atmosphere were concentrated in the small particle size segment (20-50 µm). The concentration of MPs in the air mass from marine transport was 14.7 items/m3 - lower than that from terrestrial transport (32.0 items/m3). The number concentration of airborne MPs was negatively correlated with relative humidity. MPs from terrestrial transport were mainly rubber (20.2%), while those from marine transport were mainly PFR (18%). MPs in the marine transport air mass were more aged and had a lower number concentration than those in the terrestrial transport air mass. The number concentration of airborne MPs is higher during the day than at night. These findings could contribute to the development of targeted control measures and methods to reduce MP pollution.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Microplásticos , China , Microplásticos/análisis , Contaminantes Atmosféricos/análisis , Ciudades , Atmósfera/química , Tamaño de la Partícula
2.
Environ Pollut ; 360: 124666, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098640

RESUMEN

Cooking oil fumes (COF) are known to emit a wide range of organic compounds with significant impacts on human health and urban air quality. This study used HPLC-QToF-MS and Vocus PTR-TOF to explore the chemical constituents and influencing factors of the COF generated from eight typical Chinese dishes representing different areas in a laboratory kitchen. The results revealed that both CHO and CHON compounds exhibited strong reducibility and saturability, with CHO compounds being the dominant and CHON compounds showing greater diversity. 24 among 168 CHO compounds were identical with those generated from heating soybean oil, representing 72.4%-92.3% in abundance and 22.2%-29.2% in quantity. That was 5 among 113 CHON compounds, accounting for 7.8%-10% in abundance and 4.7%-6.7% in quantity. These findings suggest that the major CHO compounds from heating soybean oil continued to dominate the abundances in dishes. The diversity of CHO compounds and the presence of CHON compounds were influenced by the food ingredients. The VOC analysis indicated that oxygen-containing organics were the major components. 6 identical VOC species between cooking dishes and heating soybean oil were identified, comprising 36.02%-67.84% of the total VOCs mass. Notably, poor ventilation could result in even higher COF concentrations in the connected room compared to the kitchen itself.

3.
J Hazard Mater ; 478: 135577, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39178774

RESUMEN

Evidence on the link of long-term exposure to ozone (O3) with childhood asthma, rhinitis, conjunctivitis and eczema is inconclusive. We did a population-based cross-sectional survey, including 177,888 children from 173 primary and middle schools in 14 Chinese cities. A satellite-based spatiotemporal model was employed to assess four-year average O3 exposure at both residential and school locations. Information on asthma, allergic rhinitis, eczema and conjunctivitis was collected by a standard questionnaire developed by the American Thoracic Society. We used generalized non-linear and linear mixed models to test the associations. We observed linear exposure-response associations between O3 and all outcomes. The odds ratios of doctor-diagnosed asthma, rhinitis, eczema, and conjunctivitis associated with per interquartile increment in home-school O3 concentration were 1.31 (95 % confidence interval [CI]: 1.28, 1.34), 1.25 (95 %CI: 1.23, 1.28), 1.19 (95 %CI: 1.16, 1.21), and 1.28 (95 %CI: 1.21, 1.34), respectively. Similar associations were observed for asthma-related outcomes including current asthma, wheeze, current wheeze, persistent phlegm, and persistent cough. Moreover, stronger associations were observed among children who were aged > 12 years, physically inactive, and exposed to higher temperature. In conclusion, long-term O3 exposure was associated with higher risks of asthma, allergic rhinitis, conjunctivitis and eczema in children.

4.
Environ Sci Technol ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145585

RESUMEN

Poor air quality is increasingly linked to gastrointestinal diseases, suggesting a potential correlation with human intestine health. However, this relationship remains largely unexplored due to limited research. This study used a controlled mouse model exposed to cooking oil fumes (COFs) and metagenomics, transcriptomics, and metabolomics to elucidate interactions between intestine microbiota and host metabolism under environmental stress. Our findings reveal that short-term COF inhalation induces pulmonary inflammation within 3 days and leads to gastrointestinal disturbances, elucidating a pathway connecting respiratory exposure to intestinal dysfunction. The exposure intensity significantly correlates with changes in intestinal tissue integrity, microbial composition, and metabolic function. Extended exposure of 7 days disrupts intestine microbiota and alters tryptophan metabolism, with further changes observed after 14 days, highlighting an adaptive response. These results highlight the vulnerability of intestinal health to airborne pollutants and suggest a pathway through which inhaled pollutants may affect distant organ systems.

5.
Diabetes Care ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012781

RESUMEN

OBJECTIVE: To evaluate associations of wildfire fine particulate matter (PM2.5) with diabetes across multiple countries and territories. RESEARCH DESIGN AND METHODS: We collected data on 3,612,135 diabetes hospitalizations from 1,008 locations in Australia, Brazil, Canada, Chile, New Zealand, Thailand, and Taiwan during 2000-2019. Daily wildfire-specific PM2.5 levels were estimated through chemical transport models and machine-learning calibration. Quasi-Poisson regression with distributed lag nonlinear models and random-effects meta-analysis were applied to estimate associations between wildfire-specific PM2.5 and diabetes hospitalization. Subgroup analyses were by age, sex, location income level, and country or territory. Diabetes hospitalizations attributable to wildfire-specific PM2.5 and nonwildfire PM2.5 were compared. RESULTS: Each 10 µg/m3 increase in wildfire-specific PM2.5 levels over the current day and previous 3 days was associated with relative risks (95% CI) of 1.017 (1.011-1.022), 1.023 (1.011-1.035), 1.023 (1.015-1.032), 0.962 (0.823-1.032), 1.033 (1.001-1.066), and 1.013 (1.004-1.022) for all-cause, type 1, type 2, malnutrition-related, other specified, and unspecified diabetes hospitalization, respectively. Stronger associations were observed for all-cause, type 1, and type 2 diabetes in Thailand, Australia, and Brazil; unspecified diabetes in New Zealand; and type 2 diabetes in high-income locations. Relative risks (95% CI) of 0.67% (0.16-1.18%) and 1.02% (0.20-1.81%) for all cause and type 2 diabetes hospitalizations were attributable to wildfire-specific PM2.5. Compared with nonwildfire PM2.5, wildfire-specific PM2.5 posed greater risks of all-cause, type 1, and type 2 diabetes and were responsible for 38.7% of PM2.5-related diabetes hospitalizations. CONCLUSIONS: We show the relatively underappreciated links between diabetes and wildfire air pollution, which can lead to a nonnegligible proportion of PM2.5-related diabetes hospitalizations. Precision prevention and mitigation should be developed for those in advantaged communities and in Thailand, Australia, and Brazil.

6.
Environ Res ; 260: 119553, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964573

RESUMEN

Evidence regarding the link between long-term ambient ozone (O3) exposure and childhood sleep disorders is little. This study aims to examine the associations between long-term exposure to O3 and sleep disorders in children. We conducted a population-based cross-sectional survey, including 185,428 children aged 6-18 years in 173 schools across 14 Chinese cities during 2012 and 2018. Parents or guardians completed a checklist using Sleep Disturbance Scale for Children, and O3 exposure at residential and school addresses was estimated using a satellite-based spatiotemporal model. We used generalized linear mixed models to test the associations with adjustment for factors including socio-demographic variables, lifestyle, meteorology and multiple pollutants. Mean concentrations of O3, particulate matter with diameters ≤2.5 mm (PM2.5) and nitrogen dioxide (NO2) were 89.0 µg/m3, 42.5 µg/m3 and 34.4 µg/m3, respectively. O3 and NO2 concentrations were similar among provinces, while PM2.5 concentration varied significantly among provinces. Overall, 19.4% of children had at least one sleep disorder. Long-term exposure to O3 was positively associated with odds of sleep disorders for all subtypes. For example, each interquartile increment in home-school O3 concentrations was associated with a higher odds ratio for global sleep disorder, at 1.22 (95% confidence interval: 1.18, 1.26). Similar associations were observed for sleep disorder subtypes. The associations remained similar after adjustment for PM2.5 and NO2. Moreover, these associations were heterogeneous regionally, with more prominent associations among children residing in southeast region than in northeast and northwest regions in China. We concluded that long-term exposure to O3 is positively associated with risks of childhood sleep disorders. These associations varied by geographical region of China.

7.
Science ; 385(6707): 396-401, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39052782

RESUMEN

The rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the beginning of 2020 presented the world with its greatest health challenge in decades. It soon became clear that governments were unprepared to respond appropriately to this crisis. National and international public health authorities were confused about the transmission routes of the virus and the control measures required to protect against it. In particular, the need to reduce the risk of infection through sufficient and effective ventilation of indoor spaces was given little attention. In this review, we discuss insights and key lessons learned from the COVID-19 pandemic regarding the role of ventilation as an effective means against airborne transmission of pathogens and, more broadly, for supporting good indoor air quality.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior , COVID-19 , Ventilación , Humanos , Contaminación del Aire Interior/prevención & control , COVID-19/transmisión , COVID-19/prevención & control , COVID-19/epidemiología , Pandemias/prevención & control , SARS-CoV-2
8.
Environ Int ; 190: 108836, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917624

RESUMEN

The use of cleaning and disinfecting products both at work and at home increased during the COVID-19 pandemic. Those products often include surfactants, acids/bases, carcinogens such as chloroform, and endocrine-disrupting chemicals, such as cyclosiloxanes, phthalates, and synthetic fragrances, which may cause harmful health effects among professional cleaners as well as among people exposed at home or in their workplaces. The aim of this study was to synthesize the effects of the commonly used chemical, surface cleaning and disinfecting products on indoor air quality, focusing on chemical and particulate matter pollutants, exposure, and human health in residential and public buildings. We also provide a summary of recommendations to avoid harmful exposure and suggest future research directions. PubMed, Google Scholar, Scopus, and Web of Science (WoS) were used to search the literature. Analysis of the literature revealed that the use of cleaning products and disinfectants increase occupants' exposure to a variety of harmful chemical air contaminants and to particulate matter. Occupational exposure to cleaning and disinfectant products has been linked to an increased risk of asthma and rhinitis. Residential exposure to cleaning products has been shown to have an adverse effect on respiratory health, particularly on asthma onset, and on the occurrence of asthma(-like) symptoms among children and adults. Efforts to reduce occupants' exposure to cleaning chemicals will require lowering the content of hazardous substances in cleaning products and improving ventilation during and after cleaning. Experimentally examined, best cleaning practices as well as careful selection of cleaning products can minimize the burden of harmful air pollutant exposure indoors. In addition, indirect ways to reduce exposure include increasing people's awareness of the harmfulness of cleaning chemicals and of safe cleaning practices, as well as clear labelling of cleaning and disinfecting products.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Detergentes , Desinfectantes , Contaminación del Aire Interior/análisis , Humanos , Desinfectantes/análisis , Detergentes/análisis , COVID-19/prevención & control , Exposición Profesional , SARS-CoV-2 , Exposición a Riesgos Ambientales , Material Particulado/análisis
9.
Lancet Planet Health ; 8(3): e146-e155, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38453380

RESUMEN

BACKGROUND: The acute health effects of short-term (hours to days) exposure to fine particulate matter (PM2·5) have been well documented; however, the global mortality burden attributable to this exposure has not been estimated. We aimed to estimate the global, regional, and urban mortality burden associated with short-term exposure to PM2·5 and the spatiotemporal variations in this burden from 2000 to 2019. METHODS: We combined estimated global daily PM2·5 concentrations, annual population counts, country-level mortality rates, and epidemiologically derived exposure-response functions to estimate the mortality attributable to short-term PM2·5 exposure from 2000 to 2019, in the continental regions and in 13 189 urban centres worldwide at a spatial resolution of 0·1°â€ˆ× 0·1°. We tested the robustness of our mortality estimates with different theoretical minimum risk exposure levels, lag effects, and exposure-response functions. FINDINGS: Approximately 1 million (95% CI 690 000-1·3 million) premature deaths per year from 2000 to 2019 were attributable to short-term PM2·5 exposure, representing 2·08% (1·41-2·75) of total global deaths or 17 (11-22) premature deaths per 100 000 population. Annually, 0·23 million (0·15 million-0·30 million) deaths attributable to short-term PM2·5 exposure were in urban areas, constituting 22·74% of the total global deaths attributable to this cause and accounting for 2·30% (1·56-3·05) of total global deaths in urban areas. The sensitivity analyses showed that our worldwide estimates of mortality attributed to short-term PM2·5 exposure were robust. INTERPRETATION: Short-term exposure to PM2·5 contributes a substantial global mortality burden, particularly in Asia and Africa, as well as in global urban areas. Our results highlight the importance of mitigation strategies to reduce short-term exposure to air pollution and its adverse effects on human health. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council.


Asunto(s)
Contaminación del Aire , Material Particulado , Humanos , Material Particulado/análisis , Australia , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Mortalidad Prematura , Asia
12.
J Hazard Mater ; 469: 134024, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38493631

RESUMEN

Microplastic (MP) pollution is evolving into one of the most pressing environmental concerns worldwide. This study assessed the impact of economic activities on atmospheric MP pollution across 17 megacities in northern China, analyzing the correlation between the deposition flux of atmospheric MPs and variables such as city population, gross domestic product (GDP), and industrial structure. The results have shown that the MP pollution is obviously impacted by human activities related to increased GDP, population, as well as tertiary service sector, in which the MP pollution shows most close relationship with the GDP growth. Polypropylene, polyamide, polyurethane, and polyethylene were identified as the primary components of atmospheric MPs. The average particle size of MPs in atmospheric dustfall is 78.3 µm, and the frequency of MP particles increases as the particle size decreases. The findings highlight the complex relationship between socio-economic development and atmospheric MP accumulation, providing essential insights for the formulation of targeted emission reduction strategies.

13.
Innovation (Camb) ; 5(2): 100588, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38440259

RESUMEN

The combination of urbanization and global warming leads to urban overheating and compounds the frequency and intensity of extreme heat events due to climate change. Yet, the risk of urban overheating can be mitigated by urban green-blue-grey infrastructure (GBGI), such as parks, wetlands, and engineered greening, which have the potential to effectively reduce summer air temperatures. Despite many reviews, the evidence bases on quantified GBGI cooling benefits remains partial and the practical recommendations for implementation are unclear. This systematic literature review synthesizes the evidence base for heat mitigation and related co-benefits, identifies knowledge gaps, and proposes recommendations for their implementation to maximize their benefits. After screening 27,486 papers, 202 were reviewed, based on 51 GBGI types categorized under 10 main divisions. Certain GBGI (green walls, parks, street trees) have been well researched for their urban cooling capabilities. However, several other GBGI have received negligible (zoological garden, golf course, estuary) or minimal (private garden, allotment) attention. The most efficient air cooling was observed in botanical gardens (5.0 ± 3.5°C), wetlands (4.9 ± 3.2°C), green walls (4.1 ± 4.2°C), street trees (3.8 ± 3.1°C), and vegetated balconies (3.8 ± 2.7°C). Under changing climate conditions (2070-2100) with consideration of RCP8.5, there is a shift in climate subtypes, either within the same climate zone (e.g., Dfa to Dfb and Cfb to Cfa) or across other climate zones (e.g., Dfb [continental warm-summer humid] to BSk [dry, cold semi-arid] and Cwa [temperate] to Am [tropical]). These shifts may result in lower efficiency for the current GBGI in the future. Given the importance of multiple services, it is crucial to balance their functionality, cooling performance, and other related co-benefits when planning for the future GBGI. This global GBGI heat mitigation inventory can assist policymakers and urban planners in prioritizing effective interventions to reduce the risk of urban overheating, filling research gaps, and promoting community resilience.

14.
Environ Sci Technol ; 58(8): 3595-3608, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38355395

RESUMEN

Understanding the airborne survival of viruses is important for public health and epidemiological modeling and potentially to develop mitigation strategies to minimize the transmission of airborne pathogens. Laboratory experiments typically involve investigating the effects of environmental parameters on the viability or infectivity of a target airborne virus. However, conflicting results among studies are common. Herein, the results of 34 aerovirology studies were compared to identify links between environmental and compositional effects on the viability of airborne viruses. While the specific experimental apparatus was not a factor in variability between reported results, it was determined that the experimental procedure was a major factor that contributed to discrepancies in results. The most significant contributor to variability between studies was poorly defined initial viable virus concentration in the aerosol phase, causing many studies to not measure the rapid inactivation, which occurs quickly after particle generation, leading to conflicting results. Consistently, studies that measured their reference airborne viability minutes after aerosolization reported higher viability at subsequent times, which indicates that there is an initial loss of viability which is not captured in these studies. The composition of the particles which carry the viruses was also found to be important in the viability of airborne viruses; however, the mechanisms for this effect are unknown. Temperature was found to be important for aerosol-phase viability, but there is a lack of experiments that directly compare the effects of temperature in the aerosol phase and the bulk phase. There is a need for repeated measurements between different research groups under identical conditions both to assess the degree of variability between studies and also to attempt to better understand already published data. Lack of experimental standardization has hindered the ability to quantify the differences between studies, for which we provide recommendations for future studies. These recommendations are as follows: measuring the reference airborne viability using the "direct method"; use equipment which maximizes time resolution; quantify all losses appropriately; perform, at least, a 5- and 10-min sample, if possible; report clearly the composition of the virus suspension; measure the composition of the gas throughout the experiment. Implementing these recommendations will address the most significant oversights in the existing literature and produce data which can more easily be quantitatively compared.


Asunto(s)
Virus , Aerosoles
15.
Sci Total Environ ; 918: 170685, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38316298

RESUMEN

Cardiovascular diseases (CVDs) become a major public health concern. Evidence concerning the effects of outdoor artificial light at night (ALAN) on CVD in adults is scarce. We aimed to investigate the extent to which outdoor ALAN could affect the risk of CVD over a exposure range. Data from the China Health and Retirement Longitudinal Study, a population-based longitudinal study, launched in 2011-2012 and follow up till 2018, covering 28 provinces, autonomous regions and municipalities across mainland China. This study included 14,097 adults aged ≥45 years. Outdoor ALAN exposure (in nanowatts per centimeters squared per steradian) within 500 m of each participant's baseline residence was obtained from satellite image data. CVD was defined from medical diagnosis. The population was divided into three groups based on outdoor ALAN exposure from low to high. Cox regression model was used to estimate the association between outdoor ALAN exposure and incident CVD with hazard ratios (HRs) and 95 % confidence intervals (CIs). The mean (SD) age of the cohort was 57.6 (9.1) years old and 49.3 % were males. Outdoor ALAN exposure of study participants ranged from 0.02 to 39.79 nW/cm2/sr. During 83,033 person-years of follow-up, 2190 (15.5 %) cases of CVD were identified. Both low (HR: 1.21; 95 % CI: 1.02-1.43) and high (HR: 1.23; 95 % CI: 1.04-1.46) levels of outdoor ALAN exposure group were associated with higher risk of CVD compared with intermediate levels of outdoor ALAN exposure group. Body mass index was a significant effect modifier in the association between outdoor ALAN and risk of CVD, with stronger effects among those who was overweight or obese. The findings of this study suggest that low and high outdoor ALAN exposure were associated with a higher risk for CVD. More attention should be given to the cardiovascular effects associated with outdoor ALAN exposure.


Asunto(s)
Enfermedades Cardiovasculares , Adulto , Masculino , Humanos , Niño , Femenino , Estudios de Cohortes , Enfermedades Cardiovasculares/epidemiología , Estudios Longitudinales , Contaminación Lumínica , Factores de Riesgo , China/epidemiología
16.
Environ Int ; 183: 108430, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38219544

RESUMEN

Land use regression (LUR) models are widely used in epidemiological and environmental studies to estimate humans' exposure to air pollution within urban areas. However, the early models, developed using linear regressions and data from fixed monitoring stations and passive sampling, were primarily designed to model traditional and criteria air pollutants and had limitations in capturing high-resolution spatiotemporal variations of air pollution. Over the past decade, there has been a notable development of multi-source observations from low-cost monitors, mobile monitoring, and satellites, in conjunction with the integration of advanced statistical methods and spatially and temporally dynamic predictors, which have facilitated significant expansion and advancement of LUR approaches. This paper reviews and synthesizes the recent advances in LUR approaches from the perspectives of the changes in air quality data acquisition, novel predictor variables, advances in model-developing approaches, improvements in validation methods, model transferability, and modeling software as reported in 155 LUR studies published between 2011 and 2023. We demonstrate that these developments have enabled LUR models to be developed for larger study areas and encompass a wider range of criteria and unregulated air pollutants. LUR models in the conventional spatial structure have been complemented by more complex spatiotemporal structures. Compared with linear models, advanced statistical methods yield better predictions when handling data with complex relationships and interactions. Finally, this study explores new developments, identifies potential pathways for further breakthroughs in LUR methodologies, and proposes future research directions. In this context, LUR approaches have the potential to make a significant contribution to future efforts to model the patterns of long- and short-term exposure of urban populations to air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Modelos Lineales , Dióxido de Nitrógeno/análisis
17.
Environ Res ; 241: 117635, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972813

RESUMEN

Information on the spatio-temporal patterns of the burden of ischemic heart disease (IHD) caused by ambient ambient fine particulate matter (PM2.5) in the global level is needed to prioritize the control of ambient air pollution and prevent the burden of IHD. The Global Burden of Disease Study (GBD) 2019 provides data on IHD attributable to ambient PM2.5. The IHD burden and mortality attributable to ambient PM2.5 were analyzed by year, age, gender, socio-demographic index (SDI) level, geographical region and country. Estimated annual percentage change (EAPC) was calculated to estimate the temporal trends of age-standardized mortality rate (ASMR) and age-standardized disability-adjusted life years rate (ASDR) from 1990 to 2019. Globally, the ASMR and ASDR for ambient PM2.5-related IHD tended to level off generally, with EAPC of -0.03 (95% CI: -0.06, 0.12) and 0.3 (95% CI: 0.22, 0.37), respectively. In the past 30 years, there were obvious differences in the trend of burden change among different regions. A highest increased burden was estimated in low-middle SDI region (EAPC of ASMR: 3.73 [95% CI: 3.56, 3.9], EAPC of ASDR: 3.83 [95% CI: 3.64, 4.02]). In contrast, the burden in high SDI region (EAPC of ASMR: -4.48 [95% CI: -4.6, -4.35], EAPC of ASDR: -3.98 [95% CI: -4.12, -3.85]) has declined most significantly. Moreover, this burden was higher among men and older populations. EAPCs of the ASMR (R = -0.776, p < 0.001) and ASDR (R = -0.781, p < 0.001) of this burden had significant negative correlations with the countries' SDI level. In summary, although trends in the global burden of IHD attributable to ambient PM2.5 are stabilizing, but this burden has shifted from high SDI countries to middle and low SDI countries, especially among men and elderly populations. To reduce this burden, the air pollution management prevention need to be further strengthened, especially among males, older populations, and middle and low SDI countries.


Asunto(s)
Contaminación del Aire , Isquemia Miocárdica , Anciano , Masculino , Humanos , Carga Global de Enfermedades , Contaminación del Aire/efectos adversos , Contaminación Ambiental , Isquemia Miocárdica/epidemiología , Años de Vida Ajustados por Calidad de Vida , Salud Global
18.
Environ Int ; 183: 108356, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043323

RESUMEN

BACKGROUND: Evidence suggests that maternal exposure to heat might increase the risk of preterm birth (PTB), but no study has investigated the effect from urban heat island (UHI) at individual level. AIMS: Our study aimed to investigate the association between individual UHI exposure and PTB. METHODS: We utilized data from the ongoing China Birth Cohort Study (CBCS), encompassing 103,040 birth records up to December 2020. UHI exposure was estimated for each participant using a novel individual assessment method based on temperature data and satellite-derived land cover data. We used generalized linear mixed-effects models to estimate the association between UHI exposure and PTB, adjusting for potential confounders including maternal characteristics and environmental factors. RESULTS: Consistent and statistically significant associations between UHI exposure and PTB were observed up to 21 days before birth. A 5 °C increment in UHI exposure was associated with 27 % higher risk (OR = 1.27, 95 % confident interval: 1.20, 1.34) of preterm birth in lagged day 1. Stratified analysis indicated that the associations were more pronounced in participants who were older, had higher pre-pregnancy body mass index level, of higher socioeconomic status and living in greener areas. CONCLUSION: Maternal exposure to UHI was associated with increased risk of PTB. These findings have implications for developing targeted interventions for susceptible subgroups of pregnant women. More research is needed to validate our findings of increased risk of preterm birth due to UHI exposure among pregnant women.


Asunto(s)
Nacimiento Prematuro , Humanos , Recién Nacido , Femenino , Embarazo , Nacimiento Prematuro/etiología , Calor , Estudios de Cohortes , Ciudades , China
19.
Environ Sci Technol ; 58(3): 1462-1472, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38155590

RESUMEN

The 2021 WHO guidelines stress the importance of measuring ultrafine particles using particle number concentration (PNC) for health assessments. However, commonly used particle metrics such as aerodynamic diameter and number concentrations do not fully capture the diverse chemical makeup of complex particles. To address this issue, our study used high-throughput mass spectrometry to analyze the properties of cooking oil fumes (COFs) in real time and evaluate their impact on BEAS-2B cell metabolism. Results showed insignificant differences in COF number size distributions between soybean oil and olive oil (peak concentrations of 5.20 × 105/cm3), as well as between corn oil and peanut oil (peak concentrations of 4.35 × 105/cm3). Despite the similar major chemical components among the four COFs, variations in metabolic damage were observed, indicating that the relatively small amount of chemical components of COFs can also influence particle behavior within the respiratory system, thereby impacting biological responses. Additionally, interactions between accompanying gaseous COFs and particles may alter their chemical composition through various mechanisms, introducing additional chemicals and modifying existing proportions. Hence, the chemical composition and gaseous components of COFs hold equal importance to the particle number concentration (PNC) when assessing their impact on human health. The absence of these considerations in the current guidelines underscores a research gap. It is imperative to acknowledge that for a more comprehensive approach to safeguarding public health, guidelines must be regularly updated to reflect new scientific findings and robust epidemiological evidence.


Asunto(s)
Aceites , Material Particulado , Humanos , Material Particulado/análisis , Culinaria/métodos , Gases/análisis , Alimentos
20.
Sci Total Environ ; 912: 169308, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38101632

RESUMEN

Atmospheric microplastics (MPs) have received global attention across various sectors of society due to their potential negative impacts. This study aims to understand the physicochemical characteristics of MPs in inland and coastal megacities for raising awareness about the urgent need to reduce plastic pollution. Laser Direct Infrared Imaging (LDIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDX) techniques were employed to characterize atmospheric MPs in megacities (inland megacity Beijing and coastal megacity Shanghai) in China, focusing on their physicochemical characteristics, including compositional types, number concentration, morphology, size, possible sources, and potential health risks. The LDIR analysis identified sixteen different types of MPs present in the atmospheres of Beijing and Shanghai. The number concentration of atmospheric MPs in Beijing (3.0 items/m3) is 1.8 times that of Shanghai (1.7 items/m3). The study found that the variations in MP pollution between Beijing and Shanghai are influenced by the urban industrial structure and geographical location. Morphological analysis indicates that fragment MPs have the highest relative abundance in Beijing, while fibrous MPs dominate the atmosphere of Shanghai. Additionally, the study assessed the potential health risks of atmospheric MPs to urban residents. The results suggest that residents of Beijing face more severe health risks from atmospheric MPs compared to those in Shanghai. These findings underscore the urgency to address the issue of atmospheric MPs and provide crucial evidence for the formulation of relevant environmental and health policies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA