Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(3): e91305, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24618567

RESUMEN

The main goal of this study is to compare the effects of pH, uranium concentration, and background electrolyte (seawater and NaClO4 solution) on the speciation of uranium(VI) associated with the marine bacterium Idiomarina loihiensis MAH1. This was done at the molecular level using a multidisciplinary approach combining X-ray Absorption Spectroscopy (XAS), Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), and High Resolution Transmission Electron Microscopy (HRTEM). We showed that the U(VI)/bacterium interaction mechanism is highly dependent upon pH but also the nature of the used background electrolyte played a role. At neutral conditions and a U concentration ranging from 5·10(-4) to 10(-5) M (environmentally relevant concentrations), XAS analysis revealed that uranyl phosphate mineral phases, structurally resembling meta-autunite [Ca(UO2)2(PO4)2 2-6H2O] are precipitated at the cell surfaces of the strain MAH1. The formation of this mineral phase is independent of the background solution but U(VI) luminescence lifetime analyses demonstrated that the U(VI) speciation in seawater samples is more intricate, i.e., different complexes were formed under natural conditions. At acidic conditions, pH 2, 3 and 4.3 ([U] = 5·10(-4) M, background electrolyte  = 0.1 M NaClO4), the removal of U from solution was due to biosorption to Extracellular Polysaccharides (EPS) and cell wall components as evident from TEM analysis. The LIII-edge XAS and TRLFS studies showed that the biosorption process observed is dependent of pH. The bacterial cell forms a complex with U through organic phosphate groups at pH 2 and via phosphate and carboxyl groups at pH 3 and 4.3, respectively. The differences in the complexes formed between uranium and bacteria on seawater compared to NaClO4 solution demonstrates that the actinide/microbe interactions are influenced by the three studied factors, i.e., the pH, the uranium concentration and the chemical composition of the solution.


Asunto(s)
Alteromonadaceae/metabolismo , Biotransformación , Uranio/metabolismo , Alteromonadaceae/ultraestructura , Electrólitos/química , Concentración de Iones de Hidrógeno , Agua de Mar/microbiología , Uranio/química , Espectroscopía de Absorción de Rayos X
2.
Chemosphere ; 72(3): 465-72, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18355891

RESUMEN

The production of Mg-rich carbonates by Idiomarina bacteria at modern seawater salinities has been investigated. With this objective, four strains: Idiomarina abyssalis (strain ATCC BAA-312), Idiomarina baltica (strain DSM 15154), Idiomarina loihiensis (strains DSM 15497 and MAH1) were used. The strain I. loihiensis MAH1 is a new isolate, identified in the scope of this work. The four moderately halophilic strains precipitated struvite (NH4MgPO4 x 6H2O) crystals that appear encased by small Ca-Mg kutnahorite [CaMg(CO3)2] spheres and dumbbells, which are also regularly distributed in the bacterial colonies. The proportion of Ca-Mg kutnahorite produced by the bacteria assayed ranged from 50% to 20%, and I. abyssalis also produced monohydrocalcite. All precipitated minerals appeared to be related to the bacterial metabolism and, consequently, can be considered biologically induced. Amino acid metabolism resulted in a release of ammonia and CO2 that increase the pH and CO(3)(2-) concentration of the culture medium, creating an alkaline environment that favoured carbonate and struvite precipitation. This precipitation may be also related to heterogeneous nucleation on negatively charged points of biological structures. Because the nature of the organic matrix determines which ion is preferentially adsorbed and, consequently, which mineral phase is formed, the uniquely high content in odd-iso-branched fatty acids of the Idiomarina suggests that their particular membrane characteristics could induce Ca-Mg kutnahorite production. The Ca-Mg kutnahorite, a mineral with a dolomite-ordered structure, production at seawater salinities is noticeable. To date, such precipitation in laboratory cultures, has only been described in hypersaline conditions. It has also been the first time that biomineralization processes have been related to Idiomarina bacteria.


Asunto(s)
Alteromonadaceae/metabolismo , Compuestos de Magnesio/metabolismo , Fosfatos/metabolismo , Agua de Mar/microbiología , Alteromonadaceae/clasificación , Alteromonadaceae/ultraestructura , Amoníaco/metabolismo , Dióxido de Carbono/metabolismo , Compuestos de Magnesio/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Fosfatos/química , Filogenia , Protones , ARN Ribosómico 16S/genética , Salinidad , Agua de Mar/química , Estruvita
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA