Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Immunol ; 14: 1155906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359540

RESUMEN

Introduction: In mature B cells, activation-induced deaminase reshapes Ig genes through somatic hypermutation and class switch recombination of the Ig heavy chain (IgH) locus under control of its 3' cis-regulatory region (3'RR). The 3'RR is itself transcribed and can undergo "locus suicide recombination" (LSR), then deleting the constant gene cluster and terminating IgH expression. The relative contribution of LSR to B cell negative selection remains to be determined. Methods: Here, we set up a knock-in mouse reporter model for LSR events with the aim to get clearer insights into the circumstances triggering LSR. In order to explore the consequences of LSR defects, we reciprocally explored the presence of autoantibodies in various mutant mouse lines in which LSR was perturbed by the lack of Sµ or of the 3'RR. Results: Evaluation of LSR events in a dedicated reporter mouse model showed their occurrence in various conditions of B cell activation, notably in antigen-experienced B cells Studies of mice with LSR defects evidenced increased amounts of self-reactive antibodies. Discussion: While the activation pathways associated with LSR are diverse, in vivo as well as in vitro, this study suggests that LSR may contribute to the elimination of self-reactive B cells.


Asunto(s)
Linfocitos B , Suicidio , Ratones , Animales , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Antígenos/metabolismo
2.
Front Immunol ; 13: 877930, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812441

RESUMEN

B cells undergo genetic rearrangements at immunoglobulin gene (Ig) loci during B cell maturation. First V(D)J recombination occurs during early B cell stages followed by class switch recombination (CSR) and somatic hypermutation (SHM) which occur during mature B cell stages. Given that RAG1/2 induces DNA double strand breaks (DSBs) during V(D)J recombination and AID (Activation-Induced Deaminase) leads to DNA modifications (mutations during SHM or DNA DSBs during CSR), it is mandatory that IgH rearrangements be tightly regulated to avoid any mutations or translocations within oncogenes. Ig loci contain various cis-regulatory elements that are involved in germline transcription, chromatin modifications or RAG/AID recruitment. Ig cis-regulatory elements are increasingly recognized as being involved in nuclear positioning, heterochromatin addressing and chromosome loop regulation. In this review, we examined multiple data showing the critical interest of studying Ig gene regulation at the whole nucleus scale. In this context, we highlighted the essential function of Ig gene regulatory elements that now have to be considered as nuclear organizers in B lymphocytes.


Asunto(s)
Linfocitos B , Cambio de Clase de Inmunoglobulina , ADN/genética , Cambio de Clase de Inmunoglobulina/genética , Inmunoglobulinas/genética , Secuencias Reguladoras de Ácidos Nucleicos
3.
Leuk Lymphoma ; 63(9): 2114-2125, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35481805

RESUMEN

The 3' regulatory region (3'RR) located downstream from the Cα gene is the conductor of transcription, accessibility, and remodeling of the IgH locus at mature B-cell stages. Convincing demonstrations of the essential contributions of the 3'RR in B-cell lymphomagenesis have been provided by mouse models which bring the oncogene c-Myc under the 3'RR transcriptional control. In this study, we developed a mouse model of CD138+ plasma B-cell lymphomas. If the KI of c-myc directly into Cα just 5' to the 3'RR in iMycCα mice produced B-cell lymphomas with low kinetics, we enforced c-myc production in iMycCα mice by the generation of homozygous c-myc transgenic mice. Our results show that homozygous iMycCα mice lead to a mouse model of plasma CD138+ B-cell lymphomas with interesting and wide transcriptomic similarities to human multiple myeloma and appropriated emergence kinetics that can be used to test new experimental therapeutic approaches.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina , Linfoma de Células B , Animales , Linfocitos B/patología , Modelos Animales de Enfermedad , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Linfoma de Células B/genética , Linfoma de Células B/patología , Ratones , Ratones Transgénicos , Secuencias Reguladoras de Ácidos Nucleicos
4.
J Allergy Clin Immunol ; 149(5): 1795-1801, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740604

RESUMEN

BACKGROUND: Allergy regroups numerous complex and various diseases classified as IgE-dependent or non-IgE-dependent hypersensitivities. IgEs are expressed as membrane and secreted forms by B cells and plasma cells, respectively. In IgE-mediated hypersensitivity, IgE secretion and binding to the high-affinity IgE receptor FcεRI on effector cells are responsible for the onset of allergic symptoms; in contrast, surface IgE expression as a B-cell receptor is barely detectable. OBJECTIVE: Our aim was to test an innovative antisense approach to reducing IgE secretion. METHODS: We designed an antisense oligonucleotide (ASO) targeting the polyadenylation signal of human secreted IgE to redirect IgE transcript polyadenylation from the secreted form to the membrane form. ASO treatments were performed on B cells from transgenic mice expressing humanized IgE (InEps mice), as well as on human primary B cells and myeloma cells. In vivo ASO delivery was tested by using an InEps mouse model. RESULTS: We demonstrated that treatment with a morpholino ASO targeting the secreted IgE polyadenylation signal drastically decreased IgE secretion and inversely increased membrane IgE mRNA expression. In addition, ASO treatment induced apoptosis of IgE-expressing U266 myeloma cells, and RNA sequencing revealed attenuation of their plasma cell phenotype. Remarkably, systemic administration of an ASO coupled with Pip6a as an arginine-rich cell-penetrating peptide decreased IgE secretion in vivo. CONCLUSION: Altogether, this ASO strategy could be an effective way to decrease IgE secretion and allergic symptoms in patients with IgE-dependent allergies, and it could also promote allergen tolerance through apoptosis of IgE+ antibody-secreting cells.


Asunto(s)
Hipersensibilidad , Mieloma Múltiple , Animales , Supervivencia Celular , Humanos , Inmunoglobulina E/metabolismo , Ratones , Oligonucleótidos Antisentido/farmacología , Células Plasmáticas/metabolismo , Poliadenilación , Receptores de IgE/metabolismo
5.
Front Immunol ; 12: 737427, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777346

RESUMEN

Activation-induced deaminase (AID) is the major actor of immunoglobulin (Ig) gene diversification in germinal center B-cells. From its first description, it was considered as mandatory for class switch recombination (CSR), and this discovery initiated a long quest for all of the AID-interacting factors controlling its activity. The mechanisms focusing AID-mediated DNA lesions to given target sequences remain incompletely understood with regards the detailed characterization of optimal substrates in which cytidine deamination will lead to double strand breaks (DSBs) and chromosomal cleavage. In an effort to reconsider whether such CSR breaks absolutely require AID, we herein provide evidence, based on deep-sequencing approaches, showing that this dogma is not absolute in both human and mouse B lymphocytes. In activated B-cells from either AID-deficient mice or human AID-deficient patients, we report an intrinsic ability of the IgH locus to undergo "on-target" cleavage and subsequent synapsis of broken regions in conditions able to yield low-level CSR. DNA breaks occur in such conditions within the same repetitive S regions usually targeted by AID, but their repair follows a specific pathway with increased usage of microhomology-mediated repair. These data further demonstrate the role of AID machinery as not initiating de novo chromosomal cleavage but rather catalyzing a process which spontaneously initiates at low levels in an appropriately conformed IgH locus.


Asunto(s)
Linfocitos B/enzimología , Citidina Desaminasa/deficiencia , Cambio de Clase de Inmunoglobulina , Cadenas Pesadas de Inmunoglobulina/genética , Síndromes de Inmunodeficiencia/genética , Activación de Linfocitos , Animales , Linfocitos B/inmunología , Citidina Desaminasa/genética , Roturas del ADN , Reparación del ADN por Unión de Extremidades , Modelos Animales de Enfermedad , Sitios Genéticos , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Síndromes de Inmunodeficiencia/enzimología , Síndromes de Inmunodeficiencia/inmunología , Ratones Noqueados
8.
Clin Transl Immunology ; 10(6): e1280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136216

RESUMEN

OBJECTIVES: Inhibitors of bromodomain and extra terminal domain (BET) proteins are a new and growing class of anti-cancer drugs, which decrease oncogene expression by targeting superenhancers. Antibody production is another physiological process relying on superenhancers, and it remains to be clarified whether potential immunomodulatory properties of BET inhibitors might impact humoral immunity and allergy. METHODS: We thus evaluated humoral immune responses and their Th2 context in vitro and in vivo in mice following treatment with the classical BET-inhibitor JQ1. We quantified immunoglobulin (Ig) and antibody production by B cells either stimulated in vitro or obtained from immunised mice. JQ1 effects on class switching and activation-induced deaminase loading were determined, together with modifications of B, T follicular helper (Tfh) and T helper 2 (Th2) populations. JQ1 was finally tested in B-cell-dependent models of immune disorders. RESULTS: Bromodomain and extra terminal domain inhibition reduced class switching, Ig expression on B cells and antibody secretion and was correlated with decreased numbers of Tfh cells. However, JQ1 strongly increased the proportion of GATA3+ Th2 cells and the secretion of corresponding cytokines. In a mouse allergic model of lung inflammation, JQ1 did not affect eosinophil infiltration or mucus production but enhanced Th2 cytokine production and aggravated clinical manifestations. CONCLUSION: Altogether, BET inhibition thus interweaves intrinsic negative effects on B cells with a parallel complex reshaping of T-cell polarisation which can increase type 2 cytokines and eventually promote B-cell-dependent immunopathology. These opposite and potentially hazardous immunomodulatory effects raise concerns for clinical use of BET inhibitors in patients with immune disorders.

10.
Adv Immunol ; 149: 95-114, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33993921

RESUMEN

Among the multiple events leading to immunoglobulin (Ig) expression in B cells, stepwise activation of the Ig heavy chain locus (IgH) is of critical importance. Transcription regulation of the complex IgH locus has always been an interesting viewpoint to unravel the multiple and complex events required for IgH expression. First, regulatory germline transcripts (GLT) assist DNA remodeling events such as VDJ recombination, class switch recombination (CSR) and somatic hypermutation (SHM). Second, productive spliced transcripts restrict heavy chain protein expression associated either with the surface receptor of developing B cells or secreted in large amounts in plasma cells. One main transcriptional regulator for IgH lies at its 3' extremity and includes both a set of enhancers grouped in a large 3' regulatory region (3'RR) and a cluster of 3'CTCF-binding elements (3'CBEs). In this focused review, we will preferentially refer to evidence reported for the murine endogenous IgH locus, whether it is wt or carries deletions or insertions within the IgH 3' boundary and associated regulatory region.


Asunto(s)
Cambio de Clase de Inmunoglobulina , Cadenas Pesadas de Inmunoglobulina , Animales , Linfocitos B , Regulación de la Expresión Génica , Humanos , Cambio de Clase de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/genética , Ratones , Secuencias Reguladoras de Ácidos Nucleicos/genética
11.
Front Immunol ; 11: 1564, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793219

RESUMEN

Chromosomal translocations linking various oncogenes to transcriptional enhancers of the immunoglobulin heavy chain (IgH) locus are often implicated as the cause of B-cell malignancies. Two major IgH transcriptional enhancers have been reported so far. The Eµ enhancer located upstream of the Cµ gene controls early events in B-cell maturation such as VDJ recombination. The 3' regulatory region (3'RR) located downstream from the Cα gene controls late events in B-cell maturation such as IgH transcription, somatic hypermutation, and class switch recombination. Convincing demonstrations of the essential contributions of both Eµ and 3'RR in B-cell lymphomagenesis have been provided by transgenic and knock-in animal models which bring the oncogene c-myc under Eµ/3'RR transcriptional control. This short review summarizes the different mouse models so far available and their interests/limitations for progress in our understanding of human c-myc-induced B-cell lymphomagenesis.


Asunto(s)
Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Genes myc/genética , Cadenas Pesadas de Inmunoglobulina/genética , Linfoma de Células B/genética , Animales , Elementos de Facilitación Genéticos , Humanos , Linfoma de Células B/patología , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Translocación Genética
12.
Blood Adv ; 4(1): 28-39, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31899800

RESUMEN

Numerous B-cell lymphomas feature translocations linking oncogenes to different locations in the immunoglobulin heavy chain (IgH) locus. During Burkitt lymphoma (BL), IgH breakpoints for c-myc translocation stand either close to JH segments or within switch regions. Transcription, accessibility, and remodeling of the IgH locus are under the control of the 2 potent cis-acting enhancer elements: Eµ and the 3' regulatory region (3'RR). To ensure their respective contributions to oncogene deregulation in the context of the endogenous IgH locus, we studied transgenic mice harboring a knock-in of c-myc in various positions of the IgH locus (3' to JH segments, 5' to Cµ with Eµ deletion and Cα). The observed spectrum of tumors, kinetics of emergence, and transcriptome analysis provide strong evidence that both Eµ and 3'RR deregulate c-myc and cooperate together to promote B-cell lymphomagenesis. Transgenics mimicking endemic BL (with c-myc placed 3' to JH segments) exhibited the highest rate of B-cell lymphoma emergence, the highest Ki67 index of proliferation, and the highest transcriptomic similarities to human BL. The 3'RR enhancer alone deregulated c-myc and initiated the development of BL-like lymphomas, suggesting that its targeting would be of therapeutic interest to reduce c-myc oncogenicity in vivo.


Asunto(s)
Dromaiidae , Linfoma de Células B , Animales , Cadenas Pesadas de Inmunoglobulina/genética , Linfoma de Células B/genética , Ratones , Ratones Transgénicos , Secuencias Reguladoras de Ácidos Nucleicos
15.
PLoS Genet ; 15(6): e1007721, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31199803

RESUMEN

B-cell activation yields abundant cell death in parallel to clonal amplification and remodeling of immunoglobulin (Ig) genes by activation-induced deaminase (AID). AID promotes affinity maturation of Ig variable regions and class switch recombination (CSR) in mature B lymphocytes. In the IgH locus, these processes are under control of the 3' regulatory region (3'RR) super-enhancer, a region demonstrated in the mouse to be both transcribed and itself targeted by AID-mediated recombination. Alternatively to CSR, IgH deletions joining Sµ to "like-switch" DNA repeats that flank the 3' super-enhancer can thus accomplish so-called "locus suicide recombination" (LSR) in mouse B-cells. Using an optimized LSR-seq high throughput method, we now show that AID-mediated LSR is evolutionarily conserved and also actively occurs in humans, providing an activation-induced cell death pathway in multiple conditions of B-cell activation. LSR either focuses on the functional IgH allele or is bi-allelic, and its signature is mainly detected when LSR is ongoing while it vanishes from fully differentiated plasma cells or from "resting" blood memory B-cells. Highly diversified breakpoints are distributed either within the upstream (3'RR1) or downstream (3'RR2) copies of the IgH 3' super-enhancer and all conditions activating CSR in vitro also seem to trigger LSR although TLR ligation appeared the most efficient. Molecular analysis of breakpoints and junctions confirms that LSR is AID-dependent and reveals junctional sequences somehow similar to CSR junctions but with increased usage of microhomologies.


Asunto(s)
Linfocitos B/inmunología , Citidina Desaminasa/genética , Región de Cambio de la Inmunoglobulina/genética , Inmunoglobulinas/inmunología , Alelos , Animales , Diferenciación Celular/genética , Citidina Desaminasa/inmunología , Marcación de Gen , Humanos , Región de Cambio de la Inmunoglobulina/inmunología , Tejido Linfoide/inmunología , Ratones , Tonsila Palatina/inmunología , Tonsila Palatina/metabolismo , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Secuencias Reguladoras de Ácidos Nucleicos
16.
J Am Soc Nephrol ; 30(7): 1238-1249, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31227634

RESUMEN

BACKGROUND: IgA nephropathy (IgAN) often follows infections and features IgA mesangial deposition. Polymeric IgA deposits in the mesangium seem to have varied pathogenic potential, but understanding their pathogenicity remains a challenge. Most mesangial IgA1 in human IgAN has a hypogalactosylated hinge region, but it is unclear whether this is required for IgA deposition. Another important question is the role of adaptive IgA responses and high-affinity mature IgA antibodies and whether low-affinity IgA produced by innate-like B cells might also yield mesangial deposits. METHODS: To explore the effects of specific qualitative variations in IgA and whether altered affinity maturation can influence IgA mesangial deposition and activate complement, we used several transgenic human IgA1-producing models with IgA deposition, including one lacking the DNA-editing enzyme activation-induced cytidine deaminase (AID), which is required in affinity maturation. Also, to explore the potential role of the IgA receptor CD89 in glomerular inflammation, we used a model that expresses CD89 in a pattern observed in humans. RESULTS: We found that human IgA induced glomerular damage independent of CD89. When comparing mice able to produce high-affinity IgA antibodies with mice lacking AID-enabled Ig affinity maturation, we found that IgA deposition and complement activation significantly increased and led to IgAN pathogenesis, although without significant proteinuria or hematuria. We also observed that hinge hypoglycosylation was not mandatory for IgA deposition. CONCLUSIONS: In a mouse model of IgAN, compared with high-affinity IgA, low-affinity innate-like IgA, formed in the absence of normal antigen-driven maturation, was more readily involved in IgA glomerular deposition with pathogenic effects.


Asunto(s)
Afinidad de Anticuerpos , Mesangio Glomerular/metabolismo , Glomerulonefritis por IGA/etiología , Inmunoglobulina A/metabolismo , Animales , Antígenos CD/fisiología , Activación de Complemento , Citidina Desaminasa/fisiología , Mesangio Glomerular/patología , Glomerulonefritis por IGA/inmunología , Glicosilación , Humanos , Inmunoglobulina A/toxicidad , Ratones , Receptores Fc/fisiología
20.
Nucleic Acids Res ; 45(10): 5829-5837, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28369649

RESUMEN

Cis-regulatory elements feature clustered sites for transcription factors, defining core enhancers and have inter-species homology. The mouse IgH 3΄ regulatory region (3'RR), a major B-cell super-enhancer, consists of four of such core enhancers, scattered throughout more than 25 kb of packaging 'junk DNA', the sequence of which is not conserved but follows a unique palindromic architecture which is conserved in all mammalian species. The 3'RR promotes long-range interactions and potential IgH loops with upstream promoters, controlling class switch recombination (CSR) and somatic hypermutation (SHM). It was thus of interest to determine whether this functional architecture also involves the specific functional structure of the super-enhancer itself, potentially promoted by its symmetric DNA shell. Since many transgenic 3'RR models simply linked core enhancers without this shell, it was also important to compare such a 'core 3'RR' (c3'RR) with the intact full-length super-enhancer in an actual endogenous IgH context. Packaging DNA between 3'RR core enhancers proved in fact to be necessary for optimal SHM, CSR and IgH locus expression in plasma cells. This reveals that packaging DNA can matter in the functional anatomy of a super-enhancer, and that precise evaluation of such elements requires full consideration of their global architecture.


Asunto(s)
Regiones no Traducidas 3'/inmunología , Elementos de Facilitación Genéticos/inmunología , Cambio de Clase de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/genética , Regiones Promotoras Genéticas/inmunología , Animales , Linfocitos B/citología , Linfocitos B/inmunología , ADN/genética , ADN/inmunología , Sitios Genéticos , Cadenas Pesadas de Inmunoglobulina/clasificación , Cadenas Pesadas de Inmunoglobulina/inmunología , Ratones , Ratones Transgénicos , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/inmunología , Hipermutación Somática de Inmunoglobulina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...