Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
2.
J Immunol ; 210(9): 1209-1221, 2023 05 01.
Article En | MEDLINE | ID: mdl-36961448

Autosomal recessive PRKCD deficiency has previously been associated with the development of systemic lupus erythematosus in human patients, but the mechanisms underlying autoimmunity remain poorly understood. We introduced the Prkcd G510S mutation that we previously associated to a Mendelian cause of systemic lupus erythematosus in the mouse genome, using CRISPR-Cas9 gene editing. PrkcdG510S/G510S mice recapitulated the human phenotype and had reduced lifespan. We demonstrate that this phenotype is linked to a B cell-autonomous role of Prkcd. A detailed analysis of B cell activation in PrkcdG510S/G510S mice shows an upregulation of the PI3K/mTOR pathway after the engagement of the BCR in these cells, leading to lymphoproliferation. Treatment of mice with rapamycin, an mTORC1 inhibitor, significantly improves autoimmune symptoms, demonstrating in vivo the deleterious effect of mTOR pathway activation in PrkcdG510S/G510S mice. Additional defects in PrkcdG510S/G510S mice include a decrease in peripheral mature NK cells that might contribute to the known susceptibility to viral infections of patients with PRKCD mutations.


Autoimmunity , Lupus Erythematosus, Systemic , Humans , Animals , Mice , TOR Serine-Threonine Kinases/metabolism , B-Lymphocytes , Cell Proliferation
3.
Science ; 379(6632): eabo3627, 2023 02 10.
Article En | MEDLINE | ID: mdl-36538032

Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.


COVID-19 , Cytokines , Endoribonucleases , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Child , Humans , COVID-19/immunology , Cytokines/genetics , Cytokines/immunology , Endoribonucleases/genetics , Endoribonucleases/metabolism , RNA, Double-Stranded , SARS-CoV-2/genetics , Systemic Inflammatory Response Syndrome/genetics
4.
Nat Commun ; 12(1): 5446, 2021 09 14.
Article En | MEDLINE | ID: mdl-34521844

EOMES and T-BET are related T-box transcription factors that control natural killer (NK) cell development. Here we demonstrate that EOMES and T-BET regulate largely distinct gene sets during this process. EOMES is dominantly expressed in immature NK cells and drives early lineage specification by inducing hallmark receptors and functions. By contrast, T-BET is dominant in mature NK cells, where it induces responsiveness to IL-12 and represses the cell cycle, likely through transcriptional repressors. Regardless, many genes with distinct functions are co-regulated by the two transcription factors. By generating two gene-modified mice facilitating chromatin immunoprecipitation of endogenous EOMES and T-BET, we show a strong overlap in their DNA binding targets, as well as extensive epigenetic changes during NK cell differentiation. Our data thus suggest that EOMES and T-BET may distinctly govern, via differential expression and co-factors recruitment, NK cell maturation by inserting partially overlapping epigenetic regulations.


Cell Cycle/genetics , Cell Lineage/genetics , Killer Cells, Natural/immunology , T-Box Domain Proteins/genetics , Animals , Base Sequence , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , CD11b Antigen/genetics , CD11b Antigen/immunology , Cell Cycle/drug effects , Cell Cycle/immunology , Cell Differentiation , Cell Lineage/drug effects , Cell Lineage/immunology , Epigenesis, Genetic/immunology , Interleukin-12/pharmacology , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic , Protein Binding , Spleen/cytology , Spleen/immunology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/immunology , Transcription, Genetic , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
5.
Sci Immunol ; 6(59)2021 05 25.
Article En | MEDLINE | ID: mdl-34035116

Multiple Inflammatory Syndrome in Children (MIS-C) is a delayed and severe complication of SARS-CoV-2 infection that strikes previously healthy children. As MIS-C combines clinical features of Kawasaki disease and Toxic Shock Syndrome (TSS), we aimed to compare the immunological profile of pediatric patients with these different conditions. We analyzed blood cytokine expression, and the T cell repertoire and phenotype in 36 MIS-C cases, which were compared to 16 KD, 58 TSS, and 42 COVID-19 cases. We observed an increase of serum inflammatory cytokines (IL-6, IL-10, IL-18, TNF-α, IFNγ, CD25s, MCP1, IL-1RA) in MIS-C, TSS and KD, contrasting with low expression of HLA-DR in monocytes. We detected a specific expansion of activated T cells expressing the Vß21.3 T cell receptor ß chain variable region in both CD4 and CD8 subsets in 75% of MIS-C patients and not in any patient with TSS, KD, or acute COVID-19; this correlated with the cytokine storm detected. The T cell repertoire returned to baseline within weeks after MIS-C resolution. Vß21.3+ T cells from MIS-C patients expressed high levels of HLA-DR, CD38 and CX3CR1 but had weak responses to SARS-CoV-2 peptides in vitro. Consistently, the T cell expansion was not associated with specific classical HLA alleles. Thus, our data suggested that MIS-C is characterized by a polyclonal Vß21.3 T cell expansion not directed against SARS-CoV-2 antigenic peptides, which is not seen in KD, TSS and acute COVID-19.


CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/pathology , Adult , Child , Child, Preschool , Cytokines/blood , HLA-DR Antigens/immunology , Humans , Lymphocyte Activation/immunology , SARS-CoV-2/immunology
6.
J Exp Med ; 218(3)2021 03 01.
Article En | MEDLINE | ID: mdl-33606008

Juvenile idiopathic arthritis is the most common chronic rheumatic disease in children, and its etiology remains poorly understood. Here, we explored four families with early-onset arthritis carrying homozygous loss-of-expression mutations in LACC1. To understand the link between LACC1 and inflammation, we performed a functional study of LACC1 in human immune cells. We showed that LACC1 was primarily expressed in macrophages upon mTOR signaling. We found that LACC1 deficiency had no obvious impact on inflammasome activation, type I interferon response, or NF-κB regulation. Using bimolecular fluorescence complementation and biochemical assays, we showed that autophagy-inducing proteins, RACK1 and AMPK, interacted with LACC1. Autophagy blockade in macrophages was associated with LACC1 cleavage and degradation. Moreover, LACC1 deficiency reduced autophagy flux in primary macrophages. This was associated with a defect in the accumulation of lipid droplets and mitochondrial respiration, suggesting that LACC1-dependent autophagy fuels macrophage bioenergetics metabolism. Altogether, LACC1 deficiency defines a novel form of genetically inherited juvenile arthritis associated with impaired autophagy in macrophages.


Arthritis, Juvenile/metabolism , Arthritis, Juvenile/pathology , Autophagy , Intracellular Signaling Peptides and Proteins/deficiency , Macrophages/metabolism , Adenylate Kinase/metabolism , Adolescent , Amino Acid Sequence , Apoptosis/drug effects , Arthritis, Juvenile/genetics , Autophagy/drug effects , Autophagy/genetics , Autophagy-Related Proteins/metabolism , Bacteria/metabolism , Cell Differentiation/drug effects , Child , Exome/genetics , Female , Homozygote , Humans , Inflammasomes/metabolism , Inflammation/complications , Inflammation/pathology , Interferons/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Lipid Droplets/drug effects , Lipid Droplets/metabolism , Loss of Function Mutation/genetics , Lysosomes/drug effects , Lysosomes/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/drug effects , Male , Mitochondria/drug effects , Mitochondria/metabolism , Monocytes/drug effects , Monocytes/pathology , NF-kappa B/metabolism , Pedigree , Proteomics , Receptors for Activated C Kinase/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Young Adult
8.
Nat Commun ; 11(1): 5341, 2020 10 21.
Article En | MEDLINE | ID: mdl-33087723

Autoimmunity can occur when a checkpoint of self-tolerance fails. The study of familial autoimmune diseases can reveal pathophysiological mechanisms involved in more common autoimmune diseases. Here, by whole-exome/genome sequencing we identify heterozygous, autosomal-dominant, germline loss-of-function mutations in the SOCS1 gene in ten patients from five unrelated families with early onset autoimmune manifestations. The intracellular protein SOCS1 is known to downregulate cytokine signaling by inhibiting the JAK-STAT pathway. Accordingly, patient-derived lymphocytes exhibit increased STAT activation in vitro in response to interferon-γ, IL-2 and IL-4 that is reverted by the JAK1/JAK2 inhibitor ruxolitinib. This effect is associated with a series of in vitro and in vivo immune abnormalities consistent with lymphocyte hyperactivity. Hence, SOCS1 haploinsufficiency causes a dominantly inherited predisposition to early onset autoimmune diseases related to cytokine hypersensitivity of immune cells.


Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmunity/genetics , Suppressor of Cytokine Signaling 1 Protein/deficiency , Suppressor of Cytokine Signaling 1 Protein/genetics , Adolescent , Adult , Age of Onset , Autoimmune Diseases/metabolism , Child , Child, Preschool , Cytokines/metabolism , Female , Haploinsufficiency , Humans , Male , Models, Molecular , Mutation , Pedigree , STAT Transcription Factors/metabolism , Signal Transduction , Suppressor of Cytokine Signaling 1 Protein/chemistry , T-Lymphocytes/immunology
9.
Lancet Rheumatol ; 2(2): e99-e109, 2020 Feb.
Article En | MEDLINE | ID: mdl-38263665

BACKGROUND: Systemic lupus erythematosus (SLE) is a rare immunological disorder and genetic factors are considered important in its causation. Monogenic lupus has been associated with around 30 genotypes in humans and 60 in mice, while genome-wide association studies have identified more than 90 risk loci. We aimed to analyse the contribution of rare and predicted pathogenic gene variants in a population of unselected cases of childhood-onset SLE. METHODS: For this genetic panel analysis we designed a next-generation sequencing panel comprising 147 genes, including all known lupus-causing genes in humans, and potentially lupus-causing genes identified through GWAS and animal models. We screened 117 probands fulfilling American College of Rheumatology (ACR) criteria for SLE, ascertained through British and French cohorts of childhood-onset SLE, and compared these data with those of 791 ethnically matched controls from the 1000 Genomes Project and 574 controls from the FREX Consortium. FINDINGS: After filtering, mendelian genotypes were confirmed in eight probands, involving variants in C1QA, C1QC, C2, DNASE1L3, and IKZF1. Seven additional patients carried heterozygous variants in complement or type I interferon-associated autosomal recessive genes, with decreased concentrations of the encoded proteins C3 and C9 recorded in two patients. Rare variants that were predicted to be damaging were significantly enriched in the childhood-onset SLE cohort compared with controls; 25% of SLE probands versus 5% of controls were identified to harbour at least one rare, predicted damaging variant (p=2·98 × 10-11). Inborn errors of immunity were estimated to account for 7% of cases of childhood-onset SLE, with defects in innate immunity representing the main monogenic contribution. INTERPRETATION: An accumulation of rare variants that are predicted to be damaging in SLE-associated genes might contribute to disease expression and clinical heterogeneity. FUNDING: European Research Council.

10.
Autoimmun Rev ; 18(10): 102361, 2019 Oct.
Article En | MEDLINE | ID: mdl-31401343

Systemic lupus erythematosus (SLE) is a severe lifelong multisystem autoimmune disease characterized by the presence of autoantibodies targeting nuclear autoantigens, increased production of type I interferon and B cell abnormalities. Clinical presentation of SLE is extremely heterogeneous and different groups of disease are likely to exist. Recently, childhood-onset SLE (cSLE) cases have been linked to single gene mutations, defining the concept of monogenic or Mendelian lupus. Genes associated with Mendelian lupus can be grouped in at least three functional categories. First, complement deficiencies represent the main cause of monogenic lupus and its components are involved in the clearance of dying cells, a mechanism also called efferocytosis. Mutations in extracellular DNASE have been also identified in cSLE patients and represent additional causes leading to defective clearance of nucleic acids and apoptotic bodies. Second, the study of Aicardi-Goutières syndromes has introduced the concept of type-I interferonopathies. Bona fide lupus syndromes have been associated to this genetic condition, driven by defective nucleic acids metabolism or innate sensors overactivity. Interferon signalling anomalies can be detected and monitored during therapies, such as Janus-kinase (JAK) inhibitors. Third, tolerance breakdown can occur following genetic mutations in B and/or T cell expressing key immunoregulatory molecules. Biallelic mutations in PRKCD are associated to lupus and lymphoproliferative diseases as PKC-δ displays proapoptotic activity and is crucial to eliminate self-reactive transitional B cells. Here we review the literature of the emerging field of Mendelian lupus and discuss the physiopathological learning from these inborn errors of immunity. In addition, clinical and biological features are highlighted as well as specific therapies that have been tested in these genetic contexts.


Genetic Predisposition to Disease , Lupus Erythematosus, Systemic/classification , Lupus Erythematosus, Systemic/genetics , Polymorphism, Genetic , Humans , Lupus Erythematosus, Systemic/immunology
...