Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 8(1): 17772, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30538258

RESUMEN

Given the association between high aerobic capacity and the prevention of metabolic diseases, elucidating the mechanisms by which high aerobic capacity regulates whole-body metabolic homeostasis is a major research challenge. Oxidative post-translational modifications (Ox-PTMs) of proteins can regulate cellular homeostasis in skeletal and cardiac muscles, but the relationship between Ox-PTMs and intrinsic components of oxidative energy metabolism is still unclear. Here, we evaluated the Ox-PTM profile in cardiac and skeletal muscles of rats bred for low (LCR) and high (HCR) intrinsic aerobic capacity. Redox proteomics screening revealed different cysteine (Cys) Ox-PTM profile between HCR and LCR rats. HCR showed a higher number of oxidized Cys residues in skeletal muscle compared to LCR, while the opposite was observed in the heart. Most proteins with differentially oxidized Cys residues in the skeletal muscle are important regulators of oxidative metabolism. The most oxidized protein in the skeletal muscle of HCR rats was malate dehydrogenase (MDH1). HCR showed higher MDH1 activity compared to LCR in skeletal, but not cardiac muscle. These novel findings indicate a clear association between Cys Ox-PTMs and aerobic capacity, leading to novel insights into the role of Ox-PTMs as an essential signal to maintain metabolic homeostasis.


Asunto(s)
Cisteína/metabolismo , Metabolismo Energético/fisiología , Estrés Oxidativo/fisiología , Animales , Respiración de la Célula , Tolerancia al Ejercicio/fisiología , Malato Deshidrogenasa/metabolismo , Masculino , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Oxidación-Reducción , Condicionamiento Físico Animal/fisiología , Resistencia Física/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Ratas , Carrera/fisiología
3.
Sci Rep ; 8(1): 11818, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087400

RESUMEN

Increased proteolytic activity has been widely associated with skeletal muscle atrophy. However, elevated proteolysis is also critical for the maintenance of cellular homeostasis by disposing cytotoxic proteins and non-functioning organelles. We recently demonstrated that exercise activates autophagy and re-establishes proteostasis in cardiac diseases. Here, we characterized the impact of exercise on skeletal muscle autophagy and proteostasis in a model of neurogenic myopathy induced by sciatic nerve constriction in rats. Neurogenic myopathy, characterized by progressive atrophy and impaired contractility, was paralleled by accumulation of autophagy-related markers and loss of acute responsiveness to both colchicine and chloroquine. These changes were correlated with elevated levels of damaged proteins, chaperones and pro-apoptotic markers compared to control animals. Sustained autophagy inhibition using chloroquine in rats (50 mg.kg-1.day-1) or muscle-specific deletion of Atg7 in mice was sufficient to impair muscle contractility in control but not in neurogenic myopathy, suggesting that dysfunctional autophagy is critical in skeletal muscle pathophysiology. Finally, 4 weeks of aerobic exercise training (moderate treadmill running, 5x/week, 1 h/day) prior to neurogenic myopathy improved skeletal muscle autophagic flux and proteostasis. These changes were followed by spared muscle mass and better contractility properties. Taken together, our findings suggest the potential value of exercise in maintaining skeletal muscle proteostasis and slowing down the progression of neurogenic myopathy.


Asunto(s)
Autofagia/fisiología , Enfermedades Neuromusculares/fisiopatología , Condicionamiento Físico Animal/fisiología , Proteostasis/fisiología , Animales , Antirreumáticos/farmacología , Autofagia/genética , Cloroquina/farmacología , Masculino , Ratones Noqueados , Ratones Transgénicos , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/metabolismo , Proteolisis , Proteostasis/genética , Ratas Sprague-Dawley
4.
PLoS One ; 10(8): e0134844, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26302153

RESUMEN

Metabolic syndrome is a cluster of metabolic risk factors such as obesity, diabetes and cardiovascular diseases. Mitochondria is the main site of ATP production and its dysfunction leads to decreased oxidative phosphorylation, resulting in lipid accumulation and insulin resistance. Our group has demonstrated that kinins can modulate glucose and lipid metabolism as well as skeletal muscle mass. By using B2 receptor knockout mice (B2R-/-) we investigated whether kinin action affects weight gain and physical performance of the animals. Our results show that B2R-/- mice are resistant to high fat diet-induced obesity, have higher glucose tolerance as well as increased mitochondrial mass. These features are accompanied by higher energy expenditure and a lower feed efficiency associated with an increase in the proportion of type I fibers and intermediary fibers characterized by higher mitochondrial content and increased expression of genes related to oxidative metabolism. Additionally, the increased percentage of oxidative skeletal muscle fibers and mitochondrial apparatus in B2R-/- mice is coupled with a higher aerobic exercise performance. Taken together, our data give support to the involvement of kinins in skeletal muscle fiber type distribution and muscle metabolism, which ultimately protects against fat-induced obesity and improves aerobic exercise performance.


Asunto(s)
Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Receptor de Bradiquinina B2/fisiología , Animales , Dieta Alta en Grasa , Expresión Génica/fisiología , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Leptina/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/fisiología , Consumo de Oxígeno/fisiología
5.
Int J Cardiol ; 175(3): 499-507, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25023789

RESUMEN

BACKGROUND: Skeletal muscle wasting is associated with poor prognosis and increased mortality in heart failure (HF) patients. Glycolytic muscles are more susceptible to catabolic wasting than oxidative ones. This is particularly important in HF since glycolytic muscle wasting is associated with increased levels of reactive oxygen species (ROS). However, the main ROS sources involved in muscle redox imbalance in HF have not been characterized. Therefore, we hypothesized that NADPH oxidases would be hyperactivated in the plantaris muscle of infarcted rats, contributing to oxidative stress and hyperactivation of the ubiquitin-proteasome system (UPS), ultimately leading to atrophy. METHODS: Rats were submitted to myocardial infarction (MI) or Sham surgery. Four weeks after surgery, MI and Sham groups underwent eight weeks of treatment with apocynin, a NADPH oxidase inhibitor, or placebo. NADPH oxidase activity, oxidative stress markers, NF-κB activity, p38 MAPK phosphorylation, mRNA and sarcolemmal protein levels of NADPH oxidase components, UPS activation and fiber cross-sectional area were assessed in the plantaris muscle. RESULTS: The plantaris of MI rats displayed atrophy associated with increased Nox2 mRNA and sarcolemmal protein levels, NADPH oxidase activity, ROS production, lipid hydroperoxides levels, NF-κB activity, p38 MAPK phosphorylation and UPS activation. NADPH oxidase inhibition by apocynin prevented MI-induced skeletal muscle atrophy by reducing ROS production, NF-κB hyperactivation, p38 MAPK phosphorylation and proteasomal hyperactivity. CONCLUSION: Our data provide evidence for NADPH oxidase hyperactivation as an important source of ROS production leading to plantaris atrophy in heart failure rats, suggesting that this enzyme complex plays key role in skeletal muscle wasting in HF.


Asunto(s)
Insuficiencia Cardíaca/enzimología , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/enzimología , Atrofia Muscular/enzimología , NADPH Oxidasas/metabolismo , Animales , Activación Enzimática/fisiología , Insuficiencia Cardíaca/patología , Masculino , Músculo Esquelético/patología , Atrofia Muscular/patología , NADPH Oxidasa 2 , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
6.
PLoS One ; 9(1): e85820, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24427319

RESUMEN

BACKGROUND: Heart failure (HF)-induced skeletal muscle atrophy is often associated to exercise intolerance and poor prognosis. Better understanding of the molecular mechanisms underlying HF-induced muscle atrophy may contribute to the development of pharmacological strategies to prevent or treat such condition. It has been shown that autophagy-lysosome system is an important mechanism for maintenance of muscle mass. However, its role in HF-induced myopathy has not been addressed yet. Therefore, the aim of the present study was to evaluate autophagy signaling in myocardial infarction (MI)-induced muscle atrophy in rats. METHODS/PRINCIPAL FINDINGS: Wistar rats underwent MI or Sham surgeries, and after 12 weeks were submitted to echocardiography, exercise tolerance and histology evaluations. Cathepsin L activity and expression of autophagy-related genes and proteins were assessed in soleus and plantaris muscles by fluorimetric assay, qRT-PCR and immunoblotting, respectively. MI rats displayed exercise intolerance, left ventricular dysfunction and dilation, thereby suggesting the presence of HF. The key findings of the present study were: a) upregulation of autophagy-related genes (GABARAPL1, ATG7, BNIP3, CTSL1 and LAMP2) was observed only in plantaris while muscle atrophy was observed in both soleus and plantaris muscles, and b) Cathepsin L activity, Bnip3 and Fis1 protein levels, and levels of lipid hydroperoxides were increased specifically in plantaris muscle of MI rats. CONCLUSIONS: Altogether our results provide evidence for autophagy signaling regulation in HF-induced plantaris atrophy but not soleus atrophy. Therefore, autophagy-lysosome system is differentially regulated in atrophic muscles comprising different fiber-types and metabolic characteristics.


Asunto(s)
Autofagia , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Infarto del Miocardio/complicaciones , Transducción de Señal , Animales , Autofagia/genética , Biomarcadores , Catepsina L/metabolismo , Ecocardiografía , Regulación de la Expresión Génica , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Atrofia Muscular/patología , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/fisiopatología , Estrés Oxidativo , Condicionamiento Físico Animal , Ratas , Transcriptoma
7.
J Appl Physiol (1985) ; 114(8): 1029-41, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23429866

RESUMEN

Poor skeletal muscle performance was shown to strongly predict mortality and long-term prognosis in a variety of diseases, including heart failure (HF). Despite the known benefits of aerobic exercise training (AET) in improving the skeletal muscle phenotype in HF, the optimal exercise intensity to elicit maximal outcomes is still under debate. Therefore, the aim of the present study was to compare the effects of high-intensity AET with those of a moderate-intensity protocol on skeletal muscle of infarcted rats. Wistar rats underwent myocardial infarction (MI) or sham surgery. MI groups were submitted either to an untrained (MI-UNT); moderate-intensity (MI-CMT, 60% Vo(2)(max)); or matched volume, high-intensity AET (MI-HIT, intervals at 85% Vo(2)(max)) protocol. High-intensity AET (HIT) was superior to moderate-intensity AET (CMT) in improving aerobic capacity, assessed by treadmill running tests. Cardiac contractile function, measured by echocardiography, was equally improved by both AET protocols. CMT and HIT prevented the MI-induced decay of skeletal muscle citrate synthase and hexokinase maximal activities, and increased glycogen content, without significant differences between protocols. Similar improvements in skeletal muscle redox balance and deactivation of the ubiquitin-proteasome system were also observed after CMT and HIT. Such intracellular findings were accompanied by prevented skeletal muscle atrophy in both MI-CMT and MI-HIT groups, whereas no major differences were observed between protocols. Taken together, our data suggest that despite superior effects of HIT in improving functional capacity, skeletal muscle adaptations were remarkably similar among protocols, leading to the conclusion that skeletal myopathy in infarcted rats was equally prevented by either moderate-intensity or high-intensity AET.


Asunto(s)
Terapia por Ejercicio/métodos , Contracción Muscular , Músculo Esquelético/fisiopatología , Atrofia Muscular/prevención & control , Infarto del Miocardio/terapia , Animales , Citrato (si)-Sintasa/metabolismo , Modelos Animales de Enfermedad , Tolerancia al Ejercicio , Glucógeno/metabolismo , Hexoquinasa/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/diagnóstico por imagen , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Contracción Miocárdica , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Oxidación-Reducción , Consumo de Oxígeno , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Ratas Wistar , Ultrasonografía
8.
PLoS One ; 7(8): e41701, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22870245

RESUMEN

BACKGROUND: Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. METHODS/PRINCIPAL FINDINGS: Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7(th) month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects' levels. CONCLUSIONS: Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.


Asunto(s)
Terapia por Ejercicio , Proteínas Musculares/metabolismo , Atrofia Muscular , Estrés Oxidativo , Condicionamiento Físico Animal , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Femenino , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Humanos , Peroxidación de Lípido/genética , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Atrofia Muscular/etiología , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Atrofia Muscular/terapia , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina/genética
9.
J Appl Physiol (1985) ; 112(11): 1839-46, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22461440

RESUMEN

Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.


Asunto(s)
Calpaína/biosíntesis , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Complejo de la Endopetidasa Proteasomal/biosíntesis , Ubiquitina/biosíntesis , Regulación hacia Arriba/fisiología , Animales , Prueba de Esfuerzo/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/enzimología , Condicionamiento Físico Animal/métodos
10.
Life Sci ; 88(13-14): 578-85, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21277865

RESUMEN

AIMS: The clinical benefits of angiotensin II type 1 (AT1) receptor blockers (ARB) in heart failure (HF) include cardiac anti-remodeling and improved ventricular function. However, the cellular mechanisms underlying the benefits of ARB on ventricular function need to be better clarified. In the present manuscript, we evaluated the effects of AT1 receptor blockade on the net balance of Ca(2+) handling proteins in hearts of mice lacking α(2A) and α(2C) adrenoceptors (α(2A)/α(2C)ARKO), which develop sympathetic hyperactivity (SH) induced-HF. MAIN METHODS: A cohort of male wild-type (WT) and congenic α(2A)/α(2C)ARKO mice in a C57BL6/J genetic background (5-7mo of age) was randomly assigned to receive either placebo or ARB (Losartan, 10mg/kg for 8wks). Ventricular function (VF) was assessed by echocardiography, and cardiac myocyte width and ventricular fibrosis by a computer-assisted morphometric system. Sarcoplasmic reticulum Ca(2+) ATPase (SERCA2), phospholamban (PLN), phospho-Ser(16)-PLN, phospho-Thr(17)-PLN, phosphatase 1 (PP1), Na(+)-Ca(2+) exchanger (NCX), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and phospho-Thr(286)-CaMKII were analyzed by Western blot. KEY FINDINGS: α(2A)/α(2C)ARKO mice displayed ventricular dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis paralleled by decreased SERCA2 and increased phospho-Thr(17)-PLN, CaMKII, phospho-Thr(286)-CaMKII and NCX levels. ARB induced anti-cardiac remodeling effect and improved VF in α(2A)/α(2C)ARKO associated with increased SERCA2 and phospho-Ser(16)-PLN levels, and SERCA2:NCX ratio. Additionally, ARB decreased phospho-Thr(17)-PLN levels as well as reestablished NCX, CaMKII and phospho-Thr(286)-CaMKII toward WT levels. SIGNIFICANCE: Altogether, these data provide new insights on intracellular Ca(2+) regulatory mechanisms underlying improved ventricular function by ARB therapy in HF.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Proteínas de Unión al Calcio/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Adrenérgicos alfa 2/fisiología , Sistema Nervioso Simpático/fisiología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/administración & dosificación , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Western Blotting , Proteínas de Unión al Calcio/genética , Ecocardiografía , Prueba de Esfuerzo , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Receptores Adrenérgicos alfa 2/genética , Sistema Nervioso Simpático/metabolismo , Remodelación Ventricular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA