Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pregnancy Hypertens ; 28: 66-73, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35240546

RESUMEN

Preeclampsia (PE) is a common syndrome of pregnancy, characterized by new-onset hypertension and proteinuria after gestational week 20, or new onset of hypertension and significant end-organ dysfunction. In the worst cases, it can threaten the survival of both mother and baby. Extracellular vesicles (EVs) are lipid-bilayer nanoparticles released from cells. They are involved in cell-cell communication and transport of diverse cargo molecules. Small extracellular vesicles (sEVs, exosomes) are defined by their size and biogenesis within the endocytic compartment of the cell or reverse budding of the plasma membrane. The function of circulating gestational EVs, released from maternal organs or the placenta, remains to be explored. Here, we focused on sEVs that circulate in the maternal blood in the third trimester of human pregnancy and hypothesized that sEVs from pregnant women with PE play a role in regulation of vessel tone. When compared to sEVs from women with uncomplicated pregnancies, ex vivo exposure of isolated mouse mesenteric arteries to sEVs purified from the plasma of pregnant women with PE led to constriction in response to intraluminal pressure. This effect was not observed using microvesicles from the plasma of women with PE or using PE plasma that was depleted of EVs. Blood vessels exposed to sEVs from women with PE were also more resistant to methacholine-stimulated relaxation. Immunofluorescence microscopy confirmed the presence of sEVs within the vessel wall. Together, these data support the notion that circulating sEVs from pregnant women play a role in the regulation of arterial tone.


Asunto(s)
Vesículas Extracelulares , Hipertensión , Preeclampsia , Animales , Endotelio , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Hipertensión/metabolismo , Arterias Mesentéricas , Ratones , Embarazo
2.
Immunol Rev ; 308(1): 105-122, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35199366

RESUMEN

The mechanisms underlying maternal tolerance of the semi- or fully-allogeneic fetus are intensely investigated. Across gestation, feto-placental antigens interact with the maternal immune system locally within the trophoblast-decidual interface and distantly through shed cells and soluble molecules that interact with maternal secondary lymphoid tissues. The discovery of extracellular vesicles (EVs) as local or systemic carriers of antigens and immune-regulatory molecules has added a new dimension to our understanding of immune modulation prior to implantation, during trophoblast invasion, and throughout the course of pregnancy. New data on immune-regulatory molecules, located on EVs or within their cargo, suggest a role for EVs in negotiating immune tolerance during gestation. Lessons from the field of transplant immunology also shed light on possible interactions between feto-placentally derived EVs and maternal lymphoid tissues. These insights illuminate a potential role for EVs in major obstetrical disorders. This review provides updated information on intensely studied, pregnancy-related EVs, their cargo molecules, and patterns of fetal-placental-maternal trafficking, highlighting potential immune pathways that might underlie immune suppression or activation in gestational health and disease. Our summary also underscores the likely need to broaden the definition of the maternal-fetal interface to systemic maternal immune tissues that might interact with circulating EVs.


Asunto(s)
Vesículas Extracelulares , Placenta , Comunicación Celular , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Tolerancia Inmunológica , Inmunidad , Placenta/metabolismo , Embarazo , Trofoblastos
3.
J Allergy Clin Immunol ; 150(1): 114-130, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35085664

RESUMEN

BACKGROUND: Allergic contact dermatitis (CD) is a chronic inflammatory skin disease caused by type 1 biased adaptive immunity for which there is an unmet need for antigen (Ag)-specific immunotherapies. Exposure to skin sensitizers stimulates secretion of the proinflammatory neuropeptides substance P and hemokinin 1, which signal via the neurokinin-1 receptor (NK1R) to promote the innate and adaptive immune responses of CD. Accordingly, mice lacking the NK1R develop impaired CD. Nonetheless, the role and therapeutic opportunities of targeting the NK1R in CD remain to be elucidated. OBJECTIVE: We sought to develop an Ag-specific immunosuppressive approach to treat CD by skin codelivery of hapten and NK1R antagonists integrated in dissolvable microneedle arrays (MNA). METHODS: In vivo mouse models of contact hypersensitivity and ex vivo models of human skin were used to delineate the effects and mechanisms of NK1R signaling and the immunosuppressive effects of the contact sensitizer NK1R antagonist MNA in CD. RESULTS: We demonstrated in mice that CD requires NK1R signaling by substance P and hemokinin 1. Specific deletion of the NK1R in keratinocytes and dendritic cells, but not in mast cells, prevented CD. Skin codelivery of hapten or Ag MNA inhibited neuropeptide-mediated skin inflammation in mouse and human skin, promoted deletion of Ag-specific effector T cells, and increased regulatory T cells, which prevented CD onset and relapses locally and systemically in an Ag-specific manner. CONCLUSIONS: Immunoregulation by engineering localized skin neuroimmune networks can be used to treat cutaneous diseases that like CD are caused by type 1 immunity.


Asunto(s)
Dermatitis Alérgica por Contacto , Antagonistas del Receptor de Neuroquinina-1 , Animales , Dermatitis Alérgica por Contacto/tratamiento farmacológico , Haptenos , Ratones , Antagonistas del Receptor de Neuroquinina-1/farmacología , Receptores de Neuroquinina-1 , Sustancia P
4.
Sci Transl Med ; 13(585)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731430

RESUMEN

Despite the role of donor-specific antibodies (DSAs) in recognizing major histocompatibility complex (MHC) antigens and mediating transplant rejection, how and where recipient B cells in lymphoid tissues encounter donor MHC antigens remains unclear. Contrary to the dogma, we demonstrated here that migration of donor leukocytes out of skin or heart allografts is not necessary for B or T cell allosensitization in mice. We found that mouse skin and cardiac allografts and human skin grafts release cell-free donor MHC antigens via extracellular vesicles (EVs) that are captured by subcapsular sinus (SCS) macrophages in lymph nodes or analog macrophages in the spleen. Donor EVs were transported across the SCS macrophages, and donor MHC molecules on the EVs were recognized by alloreactive B cells. This triggered B cell activation and DSA production, which were both prevented by SCS macrophage depletion. These results reveal an unexpected role for graft-derived EVs and open venues to interfere with EV biogenesis, trafficking, or function to restrain priming or reactivation of alloreactive B cells.


Asunto(s)
Vesículas Extracelulares , Trasplante de Corazón , Animales , Linfocitos B , Rechazo de Injerto , Macrófagos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
5.
Placenta ; 102: 34-38, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33218576

RESUMEN

The discovery of regulated trafficking of extracellular vesicles (EVs) has added a new dimension to our understanding of local and distant communication among cells and tissues. Notwithstanding the expanded landscape of EV subtypes, the majority of research in the field centers on small and large EVs that are commonly termed exosomes, microvesicles and apoptotic cell-derived vesicles. In the context of pregnancy, EV-based communication has a special role in the crosstalk among the placenta, maternal and fetal compartments, with most studies focusing on trophoblastic EVs and their effect on other placental cell types, endothelial cells, and distant tissues. Many unanswered questions in the field of EV biology center on the mechanisms of vesicle biogenesis, loading of cargo molecules, EV release and trafficking, the interaction of EVs with target cells and the endocytic pathways underlying their uptake, and the intracellular processing of EVs inside target cells. These questions are directly relevant to EV-based placental-maternal-fetal communication and have unique implications in the context of interaction between two organisms. Despite rapid progress in the field, the number of speculative, unsubstantiated assumptions about placental EVs is concerning. Here we attempt to delineate existing knowledge in the field, focusing primarily on placental small EVs (exosomes). We define central questions that require investigative attention in order to advance the field.


Asunto(s)
Vesículas Extracelulares/metabolismo , Placenta/metabolismo , Complicaciones del Embarazo/metabolismo , Animales , Femenino , Humanos , Embarazo
6.
Cell Rep ; 30(10): 3448-3465.e8, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160549

RESUMEN

Efficient Ca2+ flux induced during cognate T cell activation requires signaling the T cell receptor (TCR) and unidentified G-protein-coupled receptors (GPCRs). T cells express the neurokinin-1 receptor (NK1R), a GPCR that mediates Ca2+ flux in excitable and non-excitable cells. However, the role of the NK1R in TCR signaling remains unknown. We show that the NK1R and its agonists, the neuropeptides substance P and hemokinin-1, co-localize within the immune synapse during cognate activation of T cells. Simultaneous TCR and NK1R stimulation is necessary for efficient Ca2+ flux and Ca2+-dependent signaling that sustains the survival of activated T cells and helper 1 (Th1) and Th17 bias. In a model of contact dermatitis, mice with T cells deficient in NK1R or its agonists exhibit impaired cellular immunity, due to high mortality of activated T cells. We demonstrate an effect of the NK1R in T cells that is relevant for immunotherapies based on pro-inflammatory neuropeptides and its receptors.


Asunto(s)
Calcio/metabolismo , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Neuroquinina-1/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Animales , Comunicación Autocrina/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Polaridad Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinapsis Inmunológicas/efectos de los fármacos , Sinapsis Inmunológicas/metabolismo , Interleucina-2/metabolismo , Activación de Linfocitos/efectos de los fármacos , Ratones , FN-kappa B/metabolismo , Receptores de Neuroquinina-1/agonistas , Transducción de Señal/efectos de los fármacos , Sustancia P/farmacología , Linfocitos T/efectos de los fármacos , Taquicininas/farmacología , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células Th17/efectos de los fármacos , Células Th17/inmunología
7.
J Clin Invest ; 130(1): 287-294, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31763998

RESUMEN

Activation of host T cells that mediate allograft rejection is a 2-step process. The first occurs in secondary lymphoid organs where T cells encounter alloantigens presented by host DCs and differentiate to effectors. Antigen presentation at these sites occurs principally via transfer of intact, donor MHC-peptide complexes from graft cells to host DCs (cross-dressing) or by uptake and processing of donor antigens into allopeptides bound to self-MHC molecules (indirect presentation). The second step takes place in the graft, where effector T cells reengage with host DCs before causing rejection. How host DCs present alloantigens to T cells in the graft is not known. Using mouse islet and kidney transplantation models, imaging cytometry, and 2-photon intravital microscopy, we demonstrate extensive cross-dressing of intragraft host DCs with donor MHC-peptide complexes that occurred early after transplantation, whereas host DCs presenting donor antigen via the indirect pathway were rare. Cross-dressed DCs stably engaged TCR-transgenic effector CD8+ T cells that recognized donor antigen and were sufficient for sustaining acute rejection. In the chronic kidney rejection model, cross-dressing declined over time but was still conspicuous 8 weeks after transplantation. We conclude that cross-dressing of host DCs with donor MHC molecules is a major antigen presentation pathway driving effector T cell responses within allografts.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Rechazo de Injerto/inmunología , Trasplante de Islotes Pancreáticos/inmunología , Trasplante de Riñón , Activación de Linfocitos , Aloinjertos , Animales , Linfocitos T CD8-positivos/patología , Células Dendríticas/patología , Rechazo de Injerto/patología , Ratones , Ratones Noqueados , Inmunología del Trasplante
8.
Am J Respir Crit Care Med ; 201(1): 33-46, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31498653

RESUMEN

Rationale: Intraerythrocytic polymerization of Hb S promotes hemolysis and vasoocclusive events in the microvasculature of patients with sickle cell disease (SCD). Although platelet-neutrophil aggregate-dependent vasoocclusion is known to occur in the lung and contribute to acute chest syndrome, the etiological mechanisms that trigger acute chest syndrome are largely unknown.Objectives: To identify the innate immune mechanism that promotes platelet-neutrophil aggregate-dependent lung vasoocclusion and injury in SCD.Methods:In vivo imaging of the lung in transgenic humanized SCD mice and in vitro imaging of SCD patient blood flowing through a microfluidic system was performed. SCD mice were systemically challenged with nanogram quantities of LPS to trigger lung vasoocclusion.Measurements and Main Results: Platelet-inflammasome activation led to generation of IL-1ß and caspase-1-carrying platelet extracellular vesicles (EVs) that bind to neutrophils and promote platelet-neutrophil aggregation in lung arterioles of SCD mice in vivo and SCD human blood in microfluidics in vitro. The inflammasome activation, platelet EV generation, and platelet-neutrophil aggregation were enhanced by the presence of LPS at a nanogram dose in SCD but not control human blood. Inhibition of the inflammasome effector caspase-1 or IL-1ß pathway attenuated platelet EV generation, prevented platelet-neutrophil aggregation, and restored microvascular blood flow in lung arterioles of SCD mice in vivo and SCD human blood in microfluidics in vitro.Conclusions: These results are the first to identify that platelet-inflammasome-dependent shedding of IL-1ß and caspase-1-carrying platelet EVs promote lung vasoocclusion in SCD. The current findings also highlight the therapeutic potential of targeting the platelet-inflammasome-dependent innate immune pathway to prevent acute chest syndrome.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/inmunología , Vesículas Extracelulares/inmunología , Inflamasomas/inmunología , Lesión Pulmonar/etiología , Lesión Pulmonar/fisiopatología , Agregación Plaquetaria/inmunología , Síndrome Torácico Agudo/etiología , Síndrome Torácico Agudo/fisiopatología , Anemia de Células Falciformes/fisiopatología , Animales , Humanos , Ratones , Ratones Transgénicos , Modelos Animales , Neutrófilos/inmunología
9.
Curr Opin Organ Transplant ; 24(6): 670-678, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31592838

RESUMEN

PURPOSE OF REVIEW: Extracellular vesicles released by prokaryote or eukaryote cells are emerging as mechanisms of cell-to-cell communication, by either physically interacting with the surface of target cells or transferring proteins/peptides, lipids, carbohydrates, and nuclei acids to acceptor cells. Accumulating evidence indicates that extracellular vesicles, among other functions, regulate innate and adaptive immune responses. We revisit here the effects that extracellular vesicles of various origins have on innate immunity. RECENT FINDINGS: Extracellular vesicles comprise a heterogeneous group of vesicles with different biogenesis, composition and biological properties, which include exosomes, microvesicles, apoptotic cell-derived extracellular vesicles, and other extracellular vesicles still not well characterized. Extracellular vesicles released by pathogens, leukocytes, nonhematopoietic cells, tumor cells, and likely allografts, can either stimulate or suppress innate immunity via multiple mechanisms. These include transfer to target leukocytes of pro-inflammatory or anti-inflammatory mediators, membrane receptors, enzymes, mRNAs, and noncoding RNAs; and interaction of extracellular vesicles with the complement and coagulation systems. As a result, extracellular vesicles affect differentiation, polarization, activation, tissue recruitment, cytokine and chemokine production, cytolytic and phagocytic function, and antigen transfer ability, of different types of innate immune cells. SUMMARY: The field of intercellular communication via extracellular vesicles is a rapid evolving area and the effects of pathogen-derived and host-derived extracellular vesicles on innate immunity in particular, have received increasing attention during the past decade. Future studies will be necessary to assess the full potential of the crosstalk between extracellular vesicles and the innate immune system and its use for therapeutic applications to treat chronic inflammation-based diseases and cancer growth and dissemination, among the growing list of disorders in which the innate immune system plays a critical role.


Asunto(s)
Vesículas Extracelulares/inmunología , Inmunidad Innata/inmunología , Humanos
10.
Eur J Immunol ; 49(11): 2095-2102, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31334839

RESUMEN

There is increasing evidence of the relevant connection and regulation between the gut and skin immune axis. In fact, oral administration of lipoteichoic acid (LTA) from Lactobacillus rhamnosus GG (LGG) prevents the development of UV-induced skin tumors in chronically exposed mice. Here we aim to evaluate whether this LTA is able to revert UV-induced immunosuppression as a mechanism involved in its anti-tumor effect and whether it has an immunotherapeutic effect against cutaneous squamous cell carcinoma. Using a mouse model of contact hypersensitivity, we demonstrate that LTA overcomes UV-induced skin immunosuppression. This effect was in part achieved by modulating the phenotype of lymph node resident dendritic cells (DC) and the homing of skin migratory DC. Importantly, oral LTA reduced significantly the growth of established skin tumors once UV radiation was discontinued, demonstrating that it has a therapeutic, besides the already demonstrated preventive antitumor effect. The data presented here strongly indicates that oral administration of LTA represents a promising immunotherapeutic approach for different conditions in which the skin immune system is compromised.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Lacticaseibacillus rhamnosus/química , Lipopolisacáridos/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Ácidos Teicoicos/farmacología , Rayos Ultravioleta/efectos adversos , Administración Oral , Animales , Antineoplásicos/aislamiento & purificación , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/inmunología , Movimiento Celular/efectos de la radiación , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/patología , Células Dendríticas/efectos de la radiación , Dermatitis por Contacto/genética , Dermatitis por Contacto/inmunología , Dermatitis por Contacto/patología , Femenino , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/efectos de la radiación , Lipopolisacáridos/aislamiento & purificación , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Ganglios Linfáticos/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Piel/efectos de los fármacos , Piel/inmunología , Piel/patología , Piel/efectos de la radiación , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Ácidos Teicoicos/aislamiento & purificación
12.
Methods Mol Biol ; 1899: 181-193, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30649773

RESUMEN

During that past two decades, advances in techniques for generating in vitro immune-suppressive dendritic cells (DCs) have heralded the use of these pro-tolerogenic DCs as therapeutics against transplant rejection and autoimmune diseases. In transplantation, previous dogma assumed that systemically administered therapeutic DCs bearing donor antigens (Ags) control the anti-donor response by directly interacting with anti-donor T cells in vivo. However, recent evidence indicates that the exogenously-administered therapeutic DCs instead function as Ag-transporting cells that transfer donor Ags to recipient's Ag-presenting cells (APCs) for presentation to T cells. In secondary lymphoid organs, presentation of acquired donor Ags by recipient's quiescent DCs triggers deficient activation and eventual apoptosis of donor-specific effector T cells, leading to a relative increase in the percentage of donor-specific regulatory T cells. This chapter describes the methodology to generate in vitro immune-suppressive DCs that are resistant to maturation, and to assess in vivo both their survival and their ability to regulate donor-specific T cells in a mouse model.


Asunto(s)
Antígenos/inmunología , Células Dendríticas/inmunología , Tolerancia Inmunológica , Linfocitos T Reguladores/inmunología , Animales , Presentación de Antígeno/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Células Dendríticas/trasplante , Humanos
13.
Front Immunol ; 9: 250, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29520267

RESUMEN

Donor-derived regulatory dendritic cell (DCreg) infusion before transplantation, significantly prolongs renal allograft survival in non-human primates. This is associated with enhanced expression of the immunoregulatory molecules cytotoxic T-lymphocyte-associated antigen (Ag) 4 (CTLA4) and programmed cell death protein 1 (PD1) by host donor-reactive T cells. In rodents and humans, CD28 co-stimulatory pathway blockade with the fusion protein CTLA4:Ig (CTLA4Ig) is associated with reduced differentiation and development of regulatory T cells (Treg). We hypothesized that upregulation of CTLA4 by donor-reactive CD4+ T cells in DCreg-infused recipients treated with CTLA4Ig, might be associated with higher incidences of donor-reactive CD4+ T cells with a Treg phenotype. In normal rhesus monkeys, allo-stimulated CD4+CTLA4hi, but not CD4+CTLA4med/lo T cells exhibited a regulatory phenotype, irrespective of PD1 expression. CTLA4Ig significantly reduced the incidence of CD4+CTLA4hi, but not CD4+CTLA4med/lo T cells following allo-stimulation, associated with a significant reduction in the CD4+CTLA4hi/CD4+CTLA4med/lo T cell ratio. In CTLA4Ig-treated renal allograft recipient monkeys, there was a marked reduction in circulating donor-reactive CD4+CTLA4hi T cells. In contrast, in CTLA4Ig-treated monkeys with DCreg infusion, no such reduction was observed. In parallel, the donor-reactive CD4+CTLA4hi/CD4+CTLA4med/lo T cell ratio was reduced significantly in graft recipients without DCreg infusion, but increased in those given DCreg. These observations suggest that pre-transplant DCreg infusion promotes and maintains donor-reactive CD4+CTLA4hi T cells with a regulatory phenotype after transplantation, even in the presence of CD28 co-stimulation blockade.


Asunto(s)
Abatacept/farmacología , Células Dendríticas/inmunología , Rechazo de Injerto/prevención & control , Trasplante de Riñón/efectos adversos , Linfocitos T Reguladores/inmunología , Abatacept/uso terapéutico , Animales , Antígenos CD28/inmunología , Antígeno CTLA-4/inmunología , Células Dendríticas/trasplante , Modelos Animales de Enfermedad , Rechazo de Injerto/inmunología , Supervivencia de Injerto/efectos de los fármacos , Supervivencia de Injerto/inmunología , Humanos , Terapia de Inmunosupresión/métodos , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Macaca mulatta , Masculino , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Donantes de Tejidos , Trasplante Homólogo/efectos adversos , Resultado del Tratamiento
14.
Semin Immunopathol ; 40(5): 477-490, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29594331

RESUMEN

Eukaryotic cells employ different types of extracellular vesicles (EVs) to exchange proteins, mRNAs, non-coding regulatory RNAs, carbohydrates, and lipids. Cells of the immune system, in particular antigen (Ag)-presenting cells (APCs), acquire major histocompatibility complex (MHC) class I and II molecules loaded with antigenic peptides from leukocytes and tissue parenchymal and stromal cells, through a mechanism known as MHC cross-dressing. Increasing evidence indicates that cross-dressing of APCs with pre-formed Ag-peptide/MHC complexes (pMHCs) is mediated via passage of clusters of EVs with characteristics of exosomes. A percentage of the transferred EVs remain attached to the acceptor APCs, with the appropriate orientation, at sufficient concentration within localized areas of the plasma membrane, and for sufficient time, so the preformed pMHCs carried by the EVs are presented without further processing, to cognate T cells. Although its biological relevance is not fully understood, numerous studies have demonstrated that MHC cross-dressing of APCs represents a pathway of Ag presentation of acquired pre-formed pMHCs to T cells-alternative to direct and cross-presentation-participate in immune homeostasis and T cell tolerance, cross-regulate alloreactive T cells with different MHC restricted specificities, and is a mechanism of Ag spreading for autologous, allogeneic, microbial, tumor, or vaccine-delivered Ags. Here, we compare MHC cross-dressing with other mechanisms and terminologies used for pMHC transfer, including trogocytosis. We discuss the experimental evidence, mostly from in vitro and ex vivo studies, of the role of MHC cross-dressing of APCs via EVs in positive or negative regulation of T cell immunity in the steady state, transplantation, microbial diseases, and cancer.


Asunto(s)
Vesículas Extracelulares/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Homeostasis/inmunología , Infecciones/inmunología , Neoplasias/inmunología , Trasplante de Órganos , Animales , Presentación de Antígeno , Humanos
15.
Hepatology ; 67(4): 1499-1515, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28921638

RESUMEN

Although a key role of cross-dressing has been established in immunity to viral infection and more recently in the instigation of transplant rejection, its role in tolerance is unclear. We investigated the role of intragraft dendritic cells (DCs) and cross-dressing in mouse major histocompatibility complex (MHC)-mismatched liver transplant tolerance that occurs without therapeutic immunosuppression. Although donor interstitial DCs diminished rapidly after transplantation, they were replaced in the liver by host DCs that peaked on postoperative day (POD) 7 and persisted indefinitely. Approximately 60% of these recipient DCs displayed donor MHC class I, indicating cross-dressing. By contrast, only a very minor fraction (0%-2%) of cross-dressed DCs (CD-DCs) was evident in the spleen. CD-DCs sorted from liver grafts expressed much higher levels of T cell inhibitory programed death ligand 1 (PD-L1) and high levels of interleukin-10 compared with non-CD-DCs (nCD-DCs) isolated from the graft. Concomitantly, high incidences of programed death protein 1 (PD-1)hi T cell immunoglobulin and mucin domain containing 3 (TIM-3)+ exhausted graft-infiltrating CD8+ T cells were observed. Unlike nCD-DCs, the CD-DCs failed to stimulate proliferation of allogeneic T cells but markedly suppressed antidonor host T cell proliferation. CD-DCs were much less evident in allografts from DNAX-activating protein of 12 kDa (DAP12)-/- donors that were rejected acutely. CONCLUSION: These findings suggest that graft-infiltrating PD-L1hi CD-DCs may play a key role in the regulation of alloimmunity and in the induction of liver transplant tolerance. (Hepatology 2018;67:1499-1515).


Asunto(s)
Células Dendríticas/inmunología , Supervivencia de Injerto/inmunología , Hígado/inmunología , Tolerancia al Trasplante/inmunología , Animales , Citometría de Flujo , Microscopía Intravital , Trasplante de Hígado/efectos adversos , Complejo Mayor de Histocompatibilidad/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Trasplante Homólogo
16.
Hepatology ; 67(3): 1056-1070, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29059701

RESUMEN

The role and regulators of extracellular vesicle (EV) secretion in hepatic ischemia/reperfusion (IR) injury have not been defined. Rab27a is a guanosine triphosphatase known to control EV release. Interferon regulatory factor 1 (IRF-1) is a transcription factor that plays an important role in liver IR and regulates certain guanosine triphosphatases. However, the relationships among IRF-1, Rab27a, and EV secretion are largely unknown. Here, we show induction of IRF-1 and Rab27a both in vitro in hypoxic hepatocytes and in vivo in warm IR and orthotopic liver transplantation livers. Interferon γ stimulation, IRF-1 transduction, or IR promoted Rab27a expression and EV secretion. Meanwhile, silencing of IRF-1 decreased Rab27a expression and EV secretion. Rab27a silencing decreased EV secretion and liver IR injury. Ten putative IRF-1 binding motifs in the 1,692-bp Rab27a promoter region were identified. Chromatin immunoprecipitation and electrophoretic mobility shift assay verified five functional IRF-1 binding motifs, which were confirmed by a Rab27a promoter luciferase assay. IR-induced EVs contained higher oxidized phospholipids (OxPL). OxPLs on the EV surface activated neutrophils through the toll-like receptor 4 pathway. OxPL-neutralizing E06 antibody blocked the effect of EVs and decreased liver IR injury. CONCLUSION: These findings provide a novel mechanism by which IRF-1 regulates Rab27a transcription and EV secretion, leading to OxPL activation of neutrophils and subsequent hepatic IR injury. (Hepatology 2018;67:1056-1070).


Asunto(s)
Vesículas Extracelulares/metabolismo , Factor 1 Regulador del Interferón/metabolismo , Hígado/patología , Daño por Reperfusión/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo , Animales , Técnicas de Cultivo de Célula , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Trasplante de Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Front Immunol ; 8: 1672, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29234326

RESUMEN

Trauma combined with hemorrhagic shock (HS/T) leads to systemic inflammation, which results in organ injury. Toll-like Receptor 4 (TLR4)-signaling activation contributes to the initiation of inflammatory pathways following HS/T but its cell-specific roles in this setting are not known. We assessed the importance of TLR4 on leukocytes of myeloid lineage and dendritic cells (DCs) to the early systemic inflammatory response following HS/T. Mice were subjected to HS/T and 20 inflammatory mediators were measured in plasma followed by Dynamic Bayesian Network (DBN) Analysis. Organ damage was assessed by histology and plasma ALT levels. The role of TLR4 was determined using TLR4-/-, MyD88-/-, and Trif-/- C57BL/6 (B6) mice, and by in vivo administration of a TLR4-specific neutralizing monoclonal antibody (mAb). The contribution of TLR4 expressed by myeloid leukocytes and DC was determined by generating cell-specific TLR4-/- B6 mice, including Lyz-Cre × TLR4loxP/loxP, and CD11c-Cre × TLR4loxP/loxP B6 mice. Adoptive transfer of bone marrow-derived TLR4+/+ or TLR4-/- DC into TLR4-/- mice confirmed the contribution of TLR4 on DC to the systemic inflammatory response after HS/T. Using both global knockout mice and the TLR4-blocking mAb 1A6 we established a central role for TLR4 in driving systemic inflammation. Using cell-selective TLR4-/- B6 mice, we found that TLR4 expression on both myeloid cells and CD11chigh DC is required for increases in systemic cytokine levels and organ damage after HS/T. We confirmed the capacity of TLR4 on CD11chigh DC to promote inflammation and liver damage using adoptive transfer of TLR4+/+ conventional (CD11chigh) DC into TLR4-/- mice. DBN inference identified CXC chemokines as proximal drivers of dynamic changes in the circulating levels of cytokines/chemokines after HS/T. TLR4 on DC was found to contribute selectively to the elevations in these proximal drivers. TLR4 on both myeloid cells and conventional DC is required for the initial systemic inflammation and organ damage in a mouse model of HS/T. This includes a role for TLR4 on DC in promoting increases in the early inflammatory networks identified in HS/T. These data establish DC along with macrophages as essential to the recognition of tissue damage and stress following tissue trauma with HS.

18.
19.
Curr Opin Organ Transplant ; 22(1): 46-54, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27898464

RESUMEN

PURPOSE OF REVIEW: The passenger leukocyte hypothesis predicts that after transplantation, donor antigen-presenting cells (APCs) from the graft present donor MHC molecules to directly alloreactive T cells in lymphoid organs. However, in certain transplantation models, recent evidence contradicts this long-standing concept. New findings demonstrate that host, instead of donor, APCs play a prominent role in allosensitization against donor MHC molecules via the semidirect pathway. A similar mechanism operates in development of T-cell split tolerance to noninherited maternal antigens. RECENT FINDINGS: Following fully mismatch skin or heart transplantation in mice, no or extremely few donor migrating APCs (i.e. conventional dendritic cells) are detected in the draining lymphoid organs. Instead, recipient dendritic cells that have captured donor extracellular vesicles (i.e. exosomes) carrying donor MHC molecules and APC costimulatory signals present donor MHC molecules to directly alloreactive T cells. This semidirect pathway can also give rise to a form of 'split' tolerance during chronic alloantigen exposure, as indirectly alloreactive T helper cells and directly alloreactive T-cell effectors are differentially impacted by host dendritic cells 'cross-dressed' with extracellular vesicles/exosomes derived from maternal microchimerism. SUMMARY: Acquisition by recipient APCs of donor exosomes (and likely other extracellular vesicles) released by passenger leukocytes or the graft explains the potent T-cell allosensitization against donor MHC molecules, in the absence or presence of few passenger leukocytes in lymphoid organs. It also provides the basic mechanism and in-vivo relevance of the elusive semidirect pathway. Its degree of coordination with the allopeptide - specific, indirect pathway of T-cell help may determine whether semidirect allopresentation results in a sustained, effective, acute rejection response, or rather, in abortive acute rejection and 'split' tolerance.


Asunto(s)
Exosomas/inmunología , Isoantígenos/inmunología , Humanos , Donantes de Tejidos
20.
Placenta ; 47: 86-95, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27780544

RESUMEN

INTRODUCTION: Primary human trophoblasts release a repertoire of extracellular vesicles (EVs). Among them are nano-sized exosomes, which we found to suppress the replication of a wide range of diverse viruses. These exosomes contain trophoblastic microRNAs (miRNAs) that are expressed from the chromosome 19 miRNA cluster and exhibit antiviral properties. Here, we report our investigation of the cargo of placental EVs, focusing on the composition and the antiviral properties of exosomes, microvesicles, and apoptotic blebs. METHODS: We isolated EVs using ultracentrifugation and defined their purity using immunoblotting, electron microscopy, and nanoparticle tracking. We used liquid chromatography-electrospray ionization-mass spectrometry, protein mass spectrometry, and miRNA TaqMan card PCR to examine the phospholipids, proteins, and miRNA cargo of trophoblastic EVs and an in vitro viral infection assay to assess the antiviral properties of EVs. RESULTS: We found that all three EV types contain a comparable repertoire of miRNA. Interestingly, trophoblastic exosomes harbor a protein and phospholipid profile that is distinct from that of microvesicles or apoptotic blebs. Functionally, trophoblastic exosomes exhibit the highest antiviral activity among the EVs. Consistently, plasma exosomes derived from pregnant women recapitulate the antiviral effect of trophoblastic exosomes derived from in vitro cultures of primary human trophoblasts. DISCUSSION: When compared to other trophoblastic EVs, exosomes exhibit a unique repertoire of proteins and phospholipids, but not miRNAs, and a potent viral activity. Our work suggests that human trophoblastic EVs may play a key role in maternal-placental-fetal communication.


Asunto(s)
Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Femenino , Humanos , Espectrometría de Masas , Fosfolípidos/metabolismo , Placenta/citología , Embarazo , Trofoblastos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...