Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Breath Res ; 16(3)2022 05 26.
Article En | MEDLINE | ID: mdl-35508103

ThePeppermint Initiativeseeks to inform the standardisation of breath analysis methods. FivePeppermint Experimentswith gas chromatography-ion mobility spectrometry (GC-IMS), operating in the positive mode with a tritium3H 5.68 keV, 370 MBq ionisation source, were undertaken to provide benchmarkPeppermint Washoutdata for this technique, to support its use in breath-testing, analysis, and research. Headspace analysis of a peppermint-oil capsule by GC-IMS with on-column injection (0.5 cm3) identified 12 IMS responsive compounds, of which the four most abundant were: eucalyptol;ß-pinene;α-pinene; and limonene. Elevated concentrations of these four compounds were identified in exhaled-breath following ingestion of a peppermint-oil capsule. An unidentified compound attributed as a volatile catabolite of peppermint-oil was also observed. The most intense exhaled peppermint-oil component was eucalyptol, which was selected as a peppermint marker for benchmarking GC-IMS. Twenty-five washout experiments monitored levels of exhaled eucalyptol, by GC-IMS with on-column injection (0.5 cm3), att= 0 min, and then att+ 60,t+ 90,t+ 165,t+ 285 andt+ 360 min from ingestion of a peppermint capsule resulting in 148 peppermint breath analyses. Additionally, thePeppermint Washoutdata was used to evaluate clinical deployments with a further five washout tests run in clinical settings generating an additional 35 breath samples. Regression analysis yielded an average extrapolated time taken for exhaled eucalyptol levels to return to baseline values to be 429 ± 62 min (±95% confidence-interval). The benchmark value was assigned to the lower 95% confidence-interval, 367 min. Further evaluation of the data indicated that the maximum number of volatile organic compounds discernible from a 0.5 cm3breath sample was 69, while the use of an in-line biofilter appeared to reduce this to 34.


Mentha piperita , Volatile Organic Compounds , Breath Tests/methods , Eucalyptol/analysis , Gas Chromatography-Mass Spectrometry/methods , Humans , Ion Mobility Spectrometry , Mentha piperita/chemistry , Volatile Organic Compounds/analysis
2.
J Breath Res ; 15(4)2021 09 06.
Article En | MEDLINE | ID: mdl-34416737

A major challenge for breath research is the lack of standardization in sampling and analysis. To address this, a test that utilizes a standardized intervention and a defined study protocol has been proposed to explore disparities in breath research across different analytical platforms and to provide benchmark values for comparison. Specifically, thePeppermint Experimentinvolves the targeted analysis in exhaled breath of volatile constituents of peppermint oil after ingestion of the encapsulated oil. Data from thePeppermint Experimentperformed by proton transfer reaction mass spectrometry (PTR-MS) and selected ion flow tube mass spectrometry (SIFT-MS) are presented and discussed herein, including the product ions associated with the key peppermint volatiles, namely limonene,α- andß-pinene, 1,8-cineole, menthol, menthone and menthofuran. The breath washout profiles of these compounds from 65 individuals were collected, comprising datasets from five PTR-MS and two SIFT-MS instruments. The washout profiles of these volatiles were evaluated by comparing the log-fold change over time of the product ion intensities associated with each volatile. Benchmark values were calculated from the lower 95% confidence interval of the linear time-to-washout regression analysis for all datasets combined. Benchmark washout values from PTR-MS analysis were 353 min for the sum of monoterpenes and 1,8-cineole (identical product ions), 173 min for menthol, 330 min for menthofuran, and 218 min for menthone; from SIFT-MS analysis values were 228 min for the sum of monoterpenes, 281 min for the sum of monoterpenes and 1,8-cineole, and 370 min for menthone plus 1,8-cineole. Large inter- and intra-dataset variations were observed, whereby the latter suggests that biological variability plays a key role in how the compounds are absorbed, metabolized and excreted from the body via breath. This variability seems large compared to the influence of sampling and analytical procedures, but further investigations are recommended to clarify the effects of these factors.


Mentha piperita , Protons , Benchmarking , Breath Tests , Humans , Mass Spectrometry
3.
J Breath Res ; 14(4): 046008, 2020 08 10.
Article En | MEDLINE | ID: mdl-32604084

Sampling of volatile organic compounds (VOCs) has shown promise for detection of a range of diseases but results have proved hard to replicate due to a lack of standardization. In this work we introduce the 'Peppermint Initiative'. The initiative seeks to disseminate a standardized experiment that allows comparison of breath sampling and data analysis methods. Further, it seeks to share a set of benchmark values for the measurement of VOCs in breath. Pilot data are presented to illustrate the standardized approach to the interpretation of results obtained from the Peppermint experiment. This pilot study was conducted to determine the washout profile of peppermint compounds in breath, identify appropriate sampling time points, and formalise the data analysis. Five and ten participants were recruited to undertake a standardized intervention by ingesting a peppermint oil capsule that engenders a predictable and controlled change in the VOC profile in exhaled breath. After collecting a pre-ingestion breath sample, five further samples are taken at 2, 4, 6, 8, and 10 h after ingestion. Samples were analysed using ion mobility spectrometry coupled to multi-capillary column and thermal desorption gas chromatography mass spectrometry. A regression analysis of the washout data was used to determine sampling times for the final peppermint protocol, and the time for the compound measurement to return to baseline levels was selected as a benchmark value. A measure of the quality of the data generated from a given technique is proposed by comparing data fidelity. This study protocol has been used for all subsequent measurements by the Peppermint Consortium (16 partners from seven countries). So far 1200 breath samples from 200 participants using a range of sampling and analytical techniques have been collected. The data from the consortium will be disseminated in subsequent technical notes focussing on results from individual platforms.


Breath Tests/methods , Mentha piperita/chemistry , Volatile Organic Compounds/chemistry , Benchmarking , Female , Humans , Male
4.
Data Brief ; 30: 105509, 2020 Jun.
Article En | MEDLINE | ID: mdl-32322635

The provided data are the hourly CO2-eq emission factors, and the hourly conversion factors for the cumulative energy demand and its non-renewable part for the Swiss electricity mix over one year (2016 and 2017). These data have been assessed on the base of an inventory of the technology used for electricity generation and an attributional life-cycle approach according to the methodology presented in Vuarnoz and Jusselme (2018). Compared with Vuarnoz and Jusselme [2], electricity imports from Italy to Switzerland are not neglected anymore, and lead to more accurate output data. The utility of the proposed data lies in the multiple possible applications. The presented data are necessary for conducting a life cycle assessment of all processes and products using electricity in Switzerland. Moreover, the presented data could serve as a sustainable benchmark of electricity when implementing renewable energy systems and energy storage [7]. Because of their temporal accuracy, the hourly conversion factors enable the development of energy management strategies taking into account the time-dependent life cycle impacts. Finally, they can be used for the quantitative follow-up of the decarbonization process of the grid electricity at the national level over a given lapse of time.

5.
Article En | MEDLINE | ID: mdl-32118079

Measurements of volatile organic compounds (VOCs) have been ongoing for decades to track growth rates and assist in curbing emissions of these compounds into the atmosphere. To accurately establish mole fraction trends and assess the role of these gas-phase compounds in atmospheric chemistry it is essential to have good calibration standards. A necessity and precursor to accurate VOC gas standards are the gas cylinders and the internal wall treatments that aid in maintaining the stability of the mixtures over long periods of time, measured in years. This paper will discuss the stability of VOC gas mixtures in different types of gas cylinders and internal wall treatments. Stability data will be given for 85 VOCs studied in gas mixtures by National Metrology Institutes and other agency laboratories. This evaluation of cylinder treatment materials is the outcome of an activity of the VOC Expert Group within the framework of the World Meteorological Organization (WMO) Global Atmospheric Watch (GAW) program.

...