Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Parasitol Res ; 117(7): 2149-2158, 2018 Jul.
Article En | MEDLINE | ID: mdl-29732513

Interactions of holoplanktonic mollusks with symbionts and parasites are poorly known. We investigated the ecology of infection (prevalence, intensity, and abundance) in Firoloida desmarestia, caught during two sampling campaign sessions in 2012, off the Baja California Peninsula, Mexico (IMECOCAL, 83 stations) and a coastal research center near La Sorpresa Beach, Baja California Sur, in the Gulf of California (14 stations). Only females of F. desmarestia were parasitized. Hemiuroidea parthenita rediae infected 1% of F. desmarestia population at IMECOCAL, whereas young unencysted metacercariae stages of Opechona pyriformis (Lepocreadiidae) parasitized 6.6% of the same host species at La Sorpresa. Overall, finding of rediae and metacercariae represent new geographical and host records and shows that F. desmarestia has a dual host function in the life cycle of trematodes. As first intermediate host, F. desmarestia harbors hemiuroid rediae, functioning as the source of infection to other zooplanktonic groups by dispersing successive cercariae. As second intermediate hosts, it harbors infective unencysted metacercariae stages of O. pyriformis, which parasitize nektonic predators (fish), most likely through trophic interaction. Our results suggest that some trematodes are able to spend their entire life cycle infecting only pelagic hosts. Parasite-F. desmarestia interaction is shown in a conceptual model, where we propose that transmission of trematodes may occur between individuals of F. desmarestia within the same swarm. Relevance of F. desmarestia as a potential host in which life cycle abbreviation of trematodes may take place is discussed. This is the first quantitative study of helminth interaction on F. desmarestia in the Eastern Pacific.


Gastropoda/parasitology , Metacercariae/isolation & purification , Trematoda/isolation & purification , Trematode Infections/epidemiology , Trematode Infections/veterinary , Animals , California/epidemiology , Female , Host Specificity , Host-Parasite Interactions , Life Cycle Stages/physiology , Mexico/epidemiology , Trematode Infections/parasitology
2.
Prog Oceanogr ; 160: 1-25, 2018 Jan.
Article En | MEDLINE | ID: mdl-29479121

The atlantid heteropods are regularly encountered, but rarely studied marine planktonic gastropods. Relying on a small (<14 mm), delicate aragonite shell and living in the upper ocean means that, in common with pteropods, atlantids are likely to be affected by imminent ocean changes. Variable shell morphology and widespread distributions indicate that the family is more diverse than the 23 currently known species. Uncovering this diversity is fundamental to determining the distribution of atlantids and to understanding their environmental tolerances. Here we present phylogenetic analyses of all described species of the family Atlantidae using 437 new and 52 previously published cytochrome c oxidase subunit 1 mitochondrial DNA (mtCO1) sequences. Specimens and published sequences were gathered from 32 Atlantic Ocean stations, 14 Indian Ocean stations and 21 Pacific Ocean stations between 35°N and 43°S. DNA barcoding and Automatic Barcode Gap Discovery (ABGD) proved to be valuable tools for the identification of described atlantid species, and also revealed ten additional distinct clades, suggesting that the diversity within this family has been underestimated. Only two of these clades displayed obvious morphological characteristics, demonstrating that much of the newly discovered diversity is hidden from morphology-based identification techniques. Investigation of six large atlantid collections demonstrated that 61% of previously described (morpho) species have a circumglobal distribution. Of the remaining 39%, two species were restricted to the Atlantic Ocean, five occurred in the Indian and Pacific oceans, one species was only found in the northeast Pacific Ocean, and one occurred only in the Southern Subtropical Convergence Zone. Molecular analysis showed that seven of the species with wide distributions were comprised of two or more clades that occupied distinct oceanographic regions. These distributions may suggest narrower environmental tolerances than the described morphospecies. Results provide an updated biogeography and mtCO1 reference dataset of the Atlantidae that may be used to identify atlantid species and provide a first step in understanding their evolutionary history and accurate distribution, encouraging the inclusion of this family in future plankton research.

...