Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Nucleic Acids Res ; 52(7): 3682-3701, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38321954

Retinoic acid (RA) is the ligand of RA receptors (RARs), transcription factors that bind to RA response elements. RA signaling is required for multiple processes during embryonic development, including body axis extension, hindbrain antero-posterior patterning and forelimb bud initiation. Although some RA target genes have been identified, little is known about the genome-wide effects of RA signaling during in vivo embryonic development. Here, we stimulate the RA pathway by treating zebrafish embryos with all-trans-RA (atRA) and use a combination of RNA-seq, ATAC-seq, ChIP-seq and HiChIP to gain insight into the molecular mechanisms by which exogenously induced RA signaling controls gene expression. We find that RA signaling is involved in anterior/posterior patterning, central nervous system development, and the transition from pluripotency to differentiation. AtRA treatment also alters chromatin accessibility during early development and promotes chromatin binding of RARαa and the RA targets Hoxb1b, Meis2b and Sox3, which cooperate in central nervous system development. Finally, we show that exogenous RA induces a rewiring of chromatin architecture, with alterations in chromatin 3D interactions involving target genes. Altogether, our findings identify genome-wide targets of RA signaling and provide a molecular mechanism by which developmental signaling pathways regulate target gene expression by altering chromatin topology.


Embryonic Development , Gene Expression Regulation, Developmental , Tretinoin , Animals , Chromatin/metabolism , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/drug effects , Embryonic Development/genetics , Embryonic Development/drug effects , Epigenome , Gene Expression Regulation, Developmental/drug effects , Signal Transduction/drug effects , Tretinoin/pharmacology , Tretinoin/metabolism , Zebrafish/genetics , Zebrafish/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
2.
DNA Repair (Amst) ; 51: 31-45, 2017 03.
Article En | MEDLINE | ID: mdl-28109743

DNA double strand breaks (DSBs) trigger a variety of cellular signaling processes, collectively termed the DNA-damage response (DDR), that are primarily regulated by protein kinase ataxia-telangiectasia mutated (ATM). Among DDR activated processes, the repair of DSBs by non-homologous end joining (NHEJ) is essential. The proper coordination of NHEJ factors is mainly achieved through phosphorylation by an ATM-related kinase, the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), although the molecular basis for this regulation has yet to be fully elucidated. In this study we identify the major NHEJ DNA polymerase, DNA polymerase lambda (Polλ), as a target for both ATM and DNA-PKcs in human cells. We show that Polλ is efficiently phosphorylated by DNA-PKcs in vitro and predominantly by ATM after DSB induction with ionizing radiation (IR) in vivo. We identify threonine 204 (T204) as a main target for ATM/DNA-PKcs phosphorylation on human Polλ, and establish that its phosphorylation may facilitate the repair of a subset of IR-induced DSBs and the efficient Polλ-mediated gap-filling during NHEJ. Molecular evidence suggests that Polλ phosphorylation might favor Polλ interaction with the DNA-PK complex at DSBs. Altogether, our work provides the first demonstration of how Polλ is regulated by phosphorylation to connect with the NHEJ core machinery during DSB repair in human cells.


Ataxia Telangiectasia Mutated Proteins/metabolism , DNA End-Joining Repair , DNA Polymerase beta/metabolism , DNA-Activated Protein Kinase/metabolism , Nuclear Proteins/metabolism , Amino Acid Sequence , DNA Breaks, Double-Stranded , DNA Polymerase beta/chemistry , Enzyme Activation , Humans , Phosphorylation , Sequence Alignment
...