Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(2): e0147265, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26909803

RESUMEN

Animal models of acquired epilepsies aim to provide researchers with tools for use in understanding the processes underlying the acquisition, development and establishment of the disorder. Typically, following a systemic or local insult, vulnerable brain regions undergo a process leading to the development, over time, of spontaneous recurrent seizures. Many such models make use of a period of intense seizure activity or status epilepticus, and this may be associated with high mortality and/or global damage to large areas of the brain. These undesirable elements have driven improvements in the design of chronic epilepsy models, for example the lithium-pilocarpine epileptogenesis model. Here, we present an optimised model of chronic epilepsy that reduces mortality to 1% whilst retaining features of high epileptogenicity and development of spontaneous seizures. Using local field potential recordings from hippocampus in vitro as a probe, we show that the model does not result in significant loss of neuronal network function in area CA3 and, instead, subtle alterations in network dynamics appear during a process of epileptogenesis, which eventually leads to a chronic seizure state. The model's features of very low mortality and high morbidity in the absence of global neuronal damage offer the chance to explore the processes underlying epileptogenesis in detail, in a population of animals not defined by their resistance to seizures, whilst acknowledging and being driven by the 3Rs (Replacement, Refinement and Reduction of animal use in scientific procedures) principles.


Asunto(s)
Modelos Animales de Enfermedad , Estado Epiléptico/epidemiología , Animales , Conducta Animal , Progresión de la Enfermedad , Humanos , Masculino , Morbilidad , Ratas , Ratas Wistar , Recurrencia , Estado Epiléptico/mortalidad , Estado Epiléptico/patología
2.
Neuropharmacology ; 62(2): 807-14, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21945797

RESUMEN

Ethosuximide is the drug of choice for treating generalized absence seizures, but its mechanism of action is still a matter of debate. It has long been thought to act by disrupting a thalamic focus via blockade of T-type channels and, thus, generation of spike-wave activity in thalamocortical pathways. However, there is now good evidence that generalized absence seizures may be initiated at a cortical focus and that ethosuximide may target this focus. In the present study we have looked at the effect ethosuximide on glutamate and GABA release at synapses in the rat entorhinal cortex in vitro, using two experimental approaches. Whole-cell patch-clamp studies revealed an increase in spontaneous GABA release by ethosuximide concurrent with no change in glutamate release. This was reflected in studies that estimated global background inhibition and excitation from intracellularly recorded membrane potential fluctuations, where there was a substantial rise in the ratio of network inhibition to excitation, and a concurrent decrease in excitability of neurones embedded in this network. These studies suggest that, in addition to well-characterised effects on ion channels, ethosuximide may directly elevate synaptic inhibition in the cortex and that this could contribute to its anti-absence effects. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.


Asunto(s)
Anticonvulsivantes/farmacología , Corteza Entorrinal/efectos de los fármacos , Etosuximida/farmacología , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Corteza Entorrinal/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Red Nerviosa/fisiología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
3.
Neuropharmacology ; 57(4): 356-68, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19616018

RESUMEN

To date, it has been thought that cannabinoid receptors in CNS are primarily of the CB1R subtype, with CB2R expressed only in glia and peripheral tissues. However, evidence for the expression of CB2 type cannabinoid receptors at neuronal sites in the CNS is building through anatomical localization of receptors and mRNA in neurons and behavioural studies of central effects of CB2R agonists. In the medial entorhinal area of the rat, we found that blockade of CB1R did not occlude suppression of GABAergic inhibition by the non-specific endogenous cannabinoid 2-AG, suggesting that CB1R could not account fully for the effects of 2-AG. Suppression could be mimicked using the CB2R agonist JWH-133 and reversed by the CB2R inverse agonist AM-630, indicating the presence of functional CB2R. When we reversed the order of drug application AM-630 blocked the effects of the CB2R agonist JWH-133, but not the CB1R inverse agonist LY320135. JTE-907, a CB2R inverse agonist structurally unrelated to AM-630 elicited increased GABAergic neurotransmission at picomolar concentrations. Analysis of mIPSCs revealed that CB2R effects were restricted to action potential dependent, but not action potential independent GABA release. These data provide pharmacological evidence for functional CB2R at CNS synapses.


Asunto(s)
Corteza Entorrinal/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Receptor Cannabinoide CB2/metabolismo , Sinapsis/fisiología , Animales , Ácidos Araquidónicos/farmacología , Benzofuranos/administración & dosificación , Benzofuranos/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Cannabinoides/administración & dosificación , Cannabinoides/farmacología , Fármacos del Sistema Nervioso Central/administración & dosificación , Fármacos del Sistema Nervioso Central/farmacología , Dioxoles/administración & dosificación , Dioxoles/farmacología , Endocannabinoides , Corteza Entorrinal/efectos de los fármacos , Glicéridos/farmacología , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Indoles/administración & dosificación , Indoles/farmacología , Masculino , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Quinolonas/administración & dosificación , Quinolonas/farmacología , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
4.
Neural Plast ; 2008: 808564, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19079598

RESUMEN

Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs) at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide (ACPA; 10 microM), an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC) neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500 nM), increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.


Asunto(s)
Corteza Entorrinal/fisiología , Red Nerviosa/fisiología , Receptor Cannabinoide CB1/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Análisis de Varianza , Animales , Ácidos Araquidónicos/farmacología , Benzofuranos/farmacología , Ritmo beta , Corteza Entorrinal/anatomía & histología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Inhibición Neural/fisiología , Neuronas/metabolismo , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Terminales Presinápticos/fisiología , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...